Chornobyl

From ScienceForSustainability
Jump to navigation Jump to search

The Wikipedia articles on the Chernobyl disaster and the Chernobyl Nuclear Power Plant give good accounts of the plant itself and the 1986 accident at Reactor No. 4.

64 people, 31 of them reactor staff and emergency workers, are confirmed to have died from radiation. Total deaths from the accident are predicted to be between 4,000 according to The Chernobyl Forum and 25,000 according to the Union of Concerned Scientists, with a report commissioned by the European Greens putting the number at up to 60,000 and a widely-discredited report by the founder of Greenpeace's Russian chapter claiming a million worldwide.

The Chernobyl accident - UNSCEAR's assessments of the radiation effects

The accident at the Chernobyl nuclear reactor that occurred on 26 April 1986 was the most serious accident ever to occur in the nuclear power industry. The reactor was destroyed in the accident and considerable amounts of radioactive material were released to the environment. The accident caused the deaths, within a few weeks, of 30 workers and radiation injuries to over a hundred others. In response, the authorities evacuated, in 1986, about 115,000 people from areas surrounding the reactor and subsequently relocated, after 1986, about 220,000 people from Belarus, the Russian Federation and Ukraine. The accident caused serious social and psychological disruption in the lives of those affected and vast economic losses over the entire region. Large areas of the three countries were contaminated with radioactive materials, and radionuclides from the Chernobyl release were measurable in all countries of the northern hemisphere.
Among the residents of Belarus, the Russian Federation and Ukraine, there had been up to the year 2005 more than 6,000 cases of thyroid cancer reported in children and adolescents who were exposed at the time of the accident, and more cases can be expected during the next decades. Notwithstanding the influence of enhanced screening regimes, many of those cancers were most likely caused by radiation exposures shortly after the accident. Apart from this increase, there is no evidence of a major public health impact attributable to radiation exposure two decades after the accident. There is no scientific evidence of increases in overall cancer incidence or mortality rates or in rates of non-malignant disorders that could be related to radiation exposure. The incidence of leukaemia in the general population, one of the main concerns owing to the shorter time expected between exposure and its occurrence compared with solid cancers, does not appear to be elevated. Although those most highly exposed individuals are at an increased risk of radiation-associated effects, the great majority of the population is not likely to experience serious health consequences as a result of radiation from the Chernobyl accident. Many other health problems have been noted in the populations that are not related to radiation exposure.

UNSCEAR Annex D

Backgrounder on Chernobyl Nuclear Power Plant Accident U.S. NRC

Experts conclude some cancer deaths may eventually be attributed to Chernobyl over the lifetime of the emergency workers, evacuees and residents living in the most contaminated areas. These health effects are far lower than initial speculations of tens of thousands of radiation-related deaths.

WHO

Chernobyl Nuclear Accident IAEA

Chernobyl 1986 Ed Leaver; Pandora's Back Pages

Firstly, Chernobyl was most emphatically NOT a light-water reactor. Not in any conventional sense of the word. The RBMK-1000 was a water-cooled graphite-moderated boiling water design originally intended to simultaneously produce both electric power and weapons grade plutonium. This design would never have been implemented in the west. Nonetheless, it was implemented, and with catastrophic results. From Chernobyl Accident 1986 (Updated June 2013):
“The April 1986 disaster at the Chernobyl nuclear power plant in Ukraine was the product of a flawed Soviet reactor design coupled with serious mistakes made by the plant operators. It was a direct consequence of Cold War isolation and the resulting lack of any safety culture.”31

Will The Truth About Chernobyl Ever Come Out? James Conca; Forbes; 26 Apr 2016

Yes, it already has, but the truth is so much more boring than the assertions of megadeath, that it generally gets ignored. This year marks the 30th anniversary of the Chernobyl accident (today April 26th) and the 5th anniversary of the Fukushima accident (March 11th). These two events constitute the only serious accidents in the nuclear power industry in history. People died as a result of Chernobyl, but no one has yet died from Fukushima. There were some less severe accidents, mostly at weapons sites, but the nuclear power industry is still the safest industry in the world by any measure.

arch

Engineers Race to Entomb the Decaying Chernobyl Reactor [Video] John Wendle; Scientific American; 21 Apr 2016

A giant arch will enclose the crumbling sarcophagus before radiation leaks get worse, even as plans advance to turn the area into a nature preserve

They’ve Got It Covered: Enormous Arch Moved Into Place Over Damaged Chornobyl Reactor Bechtel / The Art Of The Build; 29 Nov 2016

Thirty years after the world’s worst nuclear disaster, the gargantuan structure built to confine radiation at the Chornobyl Nuclear Power Plant is now in place after inching – literally – into position. The massive arch was slid into place on Teflon-coated steel rails. The arch, known as the “New Safe Confinement,” was built 180 meters (about 200 yards) west of the damaged power plant, the only way for the construction site to be safe enough from radiation to allow workers to build it. The 36,000- metric ton (40,000 short ton) structure began sliding to the east on Nov. 14, moving 60 centimeters (23.6 inches) at a time to come to rest atop the disaster site two weeks later.

Unique engineering feat concluded as Chernobyl arch reaches resting place European Bank for Reconstruction and Development; YouTube; 29 Nov 2016

Thirty years after the nuclear disaster in Chernobyl, the radioactive remains of the power plant’s destroyed reactor 4 have been safely enclosed following one of the world’s most ambitious engineering projects.

Chernobyl’s giant New Safe Confinement (NSC) was moved over a distance of 327 metres from its assembly point to its final resting place, completely enclosing a previous makeshift shelter that was hastily assembled immediately after the 1986 accident.

The equipment in the New Safe Confinement will now be connected to the new technological building which will serve as a control room for future operations inside the arch. The New Safe Confinement will be sealed off from the environment hermetically. Finally, after intensive testing of all equipment and commissioning, handover of the New Safe Confinement to the Chernobyl Nuclear Power Plant administration is expected in November 2017.

environmental effects

ENVIRONMENTAL CONSEQUENCES OF THE CHERNOBYL ACCIDENT AND THEIR REMEDIATION: TWENTY YEARS OF EXPERIENCE International Atomic Energy Authority

Report of the Chernobyl Forum Expert Group ‘Environment’

health

Health effects of the Chernobyl accident: an overview World Health Organisation: Ionizing Radiation; Apr 2006

According to UNSCEAR (2000), 134 liquidators received radiation doses high enough to be diagnosed with acute radiation sickness (ARS). Among them, 28 persons died in 1986 due to ARS. Other liquidators have since died but their deaths could not necessarily be attributed to radiation exposure.
The Expert Group concluded that there may be up to 4 000 additional cancer deaths among the three highest exposed groups over their lifetime (240 000 liquidators; 116 000 evacuees and the 270 000 residents of the SCZs). Since more than 120 000 people in these three groups may eventually die of cancer, the additional cancer deaths from radiation exposure correspond to 3-4% above the normal incidence of cancers from all causes.
Projections concerning cancer deaths among the five million residents of areas with radioactive caesium deposition of 37 kBq/m2 in Belarus, the Russian Federation and Ukraine are much less certain because they are exposed to doses slightly above natural background radiation levels. Predictions, generally based on the LNT model, suggest that up to 5 000 additional cancer deaths may occur in this population from radiation exposure, or about 0.6% of the cancer deaths expected in this population due to other causes. Again, these numbers only provide an indication of the likely impact of the accident because of the important uncertainties listed above.

Radiation's Complications: Pinning Health Problems on a Nuclear Disaster Isn't So Easy Charles Q. Choi; Scientific American; 18 Mar 2011

Radioactive fallout seems like the obvious culprit behind the negative medical consequences that arose after the explosion at Chernobyl, but it's hard to measure even the dosage those contaminated received, let alone link it to medical problems

wildlife

In Dead Zone of Chernobyl, Animal Kingdom Thrives MIKE HALE; New York Times; 18 Oct 2011

Cameras reveal the secret lives of Chernobyl's wildlife Mark Kinver, Environment reporter; BBC; 26 Apr 2015

Automatic cameras in the Ukrainian side of the Chernobyl Exclusion Zone have provided an insight into the previously unseen secret lives of wildlife that have made the contaminated landscape their home.

Radioactive Wolves PBS; 19 Oct 2011

In 1986 a nuclear meltdown at the infamous Chernobyl power plant in present-day Ukraine left miles of land in radioactive ruins. Residents living in areas most contaminated by the disaster were evacuated and relocated by government order, and a no-man’s land of our own making was left to its own devices. In the ensuing 25 years, forests, marshes, fields and rivers reclaimed the land, reversing the effects of hundreds of years of human development. And surprisingly, this exclusion zone, or “dead zone,” has become a kind of post-nuclear Eden, populated by beaver and bison, horses and birds, fish and falcons – and ruled by wolves.
Access to the zone is now permitted, at least on a limited basis, and scientists are monitoring the surviving wildlife in the area, trying to learn how the various species are coping with the invisible blight of radiation. As the top predators in this new wilderness, wolves best reflect the condition of the entire ecosystem because if the wolves are doing well, the populations of their prey must also be doing well. Accordingly, a key long-term study of the wolves has been initiated to determine their health, their range, and their numbers.

Do Animals in Chernobyl’s Fallout Zone Glow? Mary Mycio; Slate; ; Jan 2013? (from URL)

The scientific debate about Europe’s unlikeliest wildlife sanctuary. With discussion of Moller and Mousseau's claims

Moller & Mousseau

Birds prefer to breed in sites with low radioactivity in Chernobyl A.P Møller, T.A Mousseau; Proceedings of the Royal Society / Biological Sciences; 7 Jun 2007

Low-level radioactive contamination may affect choice of breeding site and life-history decisions if (i) radioactivity directly affects body condition or (ii) it affects resource abundance that then secondarily influences reproductive decisions. We tested the effects of radioactive contamination on nest-site choice and reproduction in a community of hole nesting birds by putting up nest boxes in areas differing in levels of background radiation. Great tit Parus major and pied flycatcher Ficedula hypoleuca significantly avoided nest boxes in heavily contaminated areas, with a stronger effect in flycatchers than in tits. These preferences could not be attributed to variation in habitat quality or resource abundance, as determined by analyses of habitat use and the relationship between radiation and life-history characters. Likewise, none of these effects could be attributed to individuals of a specific age breeding in the most contaminated areas. Laying date and clutch size were not significantly related to dose rate in either species. Hatching success was depressed by elevated radioactive contamination, interacting with habitat in the great tit and with laying date in the pied flycatcher. Interspecific differences in effects of radiation on nest-site choice suggest that species respond in a species-specific manner to radiation, perhaps related to differences in migratory habits. We suggest that individual body condition rather than secondary effects of radiation on resource abundance account for the effects on nest box use and hatching success.

Chernobyl-based birds avoid radioactive nests Catherine Brahic; New Scientist; 28 Mar 2007

Chernobyl 'not a wildlife haven' Mark Kinver, Science and nature reporter; BBC; 14 Aug 2007

The idea that the exclusion zone around the Chernobyl nuclear power plant has created a wildlife haven is not scientifically justified, a study says.

Condition, reproduction and survival of barn swallows from Chernobyl A. P. MØLLER, T. A. MOUSSEAU, G. MILINEVSKY, A. PEKLO, E. PYSANETS, T. SZÉP; Journal of Animal Ecology; 17 Oct 2005

Despite Mutations, Chernobyl Wildlife Is Thriving Kate Ravilious; National Geographic; 26 Apr 2006

But while wildlife seems to be proliferating in the Chernobyl exclusion zone, not everyone is convinced that these plants and animals are healthy.
Moller and Mousseau have shown that certain species in the area have a higher rate of genetic abnormalities than normal.
"We find an elevated frequency of partial albinism in barn swallows, meaning they have tufts of white feathers," Mousseau said.
Late last year Moller and Mousseau published a paper in the Journal of Animal Ecology showing that reproductive rates and annual survival rates are much lower in the Chernobyl birds than in control populations.
"In Italy around 40 percent of the barn swallows return each year, whereas the annual survival rate is 15 percent or less for Chernobyl," Mousseau said.

Chernobyl 'shows insect decline' Victoria Gill, Science reporter; BBC News; 18 Mar 2009

According to researchers working in the exclusion zone surrounding Chernobyl, there is a "strong signal of decline associated with the contamination". The team found that bumblebees, butterflies, grasshoppers, dragonflies and spiders were affected. They report their findings in the journal Biology Letters. Professor Timothy Mousseau from the University of South Carolina, US, and Dr Anders Moller from the University of Paris-Sud worked together on the project. The two researchers previously published findings that low-level radiation in the area has a negative impact on bird populations.

At Chernobyl and Fukushima, radioactivity has seriously harmed wildlife Timothy A. Mousseau; The Conversation; 25 Apr 2016

in the past decade population biologists have made considerable progress in documenting how radioactivity affects plants, animals and microbes. My colleagues and I have analyzed these impacts at Chernobyl, Fukushima and naturally radioactive regions of the planet. Our studies provide new fundamental insights about consequences of chronic, multigenerational exposure to low-dose ionizing radiation. Most importantly, we have found that individual organisms are injured by radiation in a variety of ways. The cumulative effects of these injuries result in lower population sizes and reduced biodiversity in high-radiation areas.

Scientific meltdown at Chernobyl? Brendan Borrell, Scientific American blog; 24 Mar 2009

Twenty years after the Chernobyl meltdown in Ukraine, radiation is still hammering the region's insect, spider, and bird populations. At least that's what Reuters and the BBC reported last week based on a paper published in the journal Biology Letters by ecologists Timothy Mousseau of the University of South Carolina and Anders Møller of the University of Paris-Sud. For the past 10 years, the duo has been running transects through the region counting wildlife and measuring radiation levels with dosimeters. "We wanted to ask the question: Are there more or fewer animals in the contaminated areas," Moller told Reuters. "Clearly there were fewer." But at least one scientist formerly associated with the team is questioning the new research. Sergey Gaschak, a researcher at the Chernobyl Center in Ukraine, told the BBC that he drew "opposite conclusions" from the same data the group collected on birds. This might seem like little more than blunt criticism, but I knew that Møller's research ethics had previously been called into question.

Wildfires

Rise in wildfires may resurrect Chernobyl’s radiation New Scientist; 9 Feb 2015

Nikolaos Evangeliou at the Norwegian Institute for Air Research and colleagues have analysed the impact of forest fires in the region, and calculated their future frequency and intensity. To do so they fed satellite images of real fires in 2002, 2008 and 2010, and measurements of radioactive caesium-137 deposited on the area, to models of air movements and fires. They estimate that of the 85 petabecquerels of radioactive caesium released by the Chernobyl accident, between 2 and 8 PBq still lurk in the upper layer of soil in the exclusion zone. In another ecosystem this might gradually fall with erosion or the removal of vegetation. But in these abandoned forests, says Evangeliou, “trees pick up the radioactive ions, then dead leaves return it to the soil”. The team calculates that the three fires released from 2 to 8 per cent of the caesium, some 0.5 PBq, in smoke. This was distributed over eastern Europe, and detected as far south as Turkey and as far west as Italy and Scandinavia. “The simulation probably underestimates the potential risks,” says Ian Fairlie, former head of the UK government’s radiation risk committee, who has studied the health impacts of Chernobyl. That’s because the estimate depends on the half-life the team assumed for Cs-137, he says, and some investigators believe it is longer. The team’s calculated release would have given people in the nearby Ukrainian capital, Kiev, an average dose of 10 microsieverts of radiation – 1 per cent of the permitted yearly dose. “This is very small,” says Tim Mousseau of the University of South Carolina at Columbia, a co-author of the study. “But these fires serve as a warning of where these contaminants can go. Should there be a larger fire, quite a bit more could end up on populated areas.”

exclusion zone

wildlife

Wildlife in the Chernobyl Exclusion Zone: Bears, Wolves and Rare Horses Roam the Forests David Sim; International Business Times; 28 Nov 2014

Camera traps set up in the Chernobyl Exclusion Zone have photographed many species of wildlife roaming the forests.

people

The women living in Chernobyl's toxic wasteland Holly Morris; Daily Telegraph; 8 Nov 2012

Decades after Chernobyl's nuclear disaster, despite the severely contaminated ground, government objections and the deaths of many fellow 'self-settlers’, a community of determined babushkas remains.

Chernobyl Exclusion Zone Resettlers thegrimfandango; Amateur Photographer; 15 Oct 2013

After the worst nuclear disaster in history at the Chernobyl nuclear power plant in 1986, over 200,000 people living within a 30km radius were evacuated to other cities, most never to return. Some, desperately unhappy with their new lives began to break back into the exclusion zone to resettle despite the risks. Although the exclusion zone is still in place and will remain so for many years due to elevated levels of radioactivity, the government eventually legalised a handful of resettlers, all over 70 years old. Ivan and his wife live happily with their cats amongst the radioactive hotspots, a few kilometers from the nuclear power plant.

Big Picture: Chernobyl Riviera, by Guillaume Herbaut Hannah Booth; Guardian; 7 Mar 2014

Each week, the Guardian Weekend magazine's editorial team choose a picture, or set of pictures, that particularly tickle their fancy. This week their choice is Guillaume Herbaut's Chernobyl Riviera

scare stories

No Nukes News 26 Apr 2016