From ScienceForSustainability
Jump to: navigation, search

Carbon Capture and Storage Bert Metz, Ogunlade Davidson, Heleen de Coninck, Manuela Loos, Leo Meyer; IPCC WGIII; 2005

The mandate of the report [] included the assessment of the technological maturity, the technical and economic potential to contribute to mitigation of climate change, and the costs. It also included legal and regulatory issues, public perception, environmental impacts and safety as well as issues related to inventories and accounting of greenhouse gas emission reductions. This report primarily assesses literature published after the Third Assessment Report (2001) on CO2 sources, capture systems, transport and various storage mechanisms. It does not cover biological carbon sequestration by land use, land use change and forestry, or by fertilization of oceans. The report builds upon the contribution of Working Group III to the Third Assessment Report Climate Change 2001 (Mitigation), and on the Special Report on Emission Scenarios of 2000, with respect to CO2 capture and storage in a portfolio of mitigation options. It identifies those gaps in knowledge that would need to be addressed in order to facilitate large-scale deployment.

Carbon Capture and Storage IEA

Current short-, medium- and long-term projections for global energy demand still point to fossil fuels being combusted in quantities incompatible with levels required to stabilise greenhouse gas (GHG) concentrations at safe levels in the atmosphere. All technologies along the CCS chain are known. They have been in operation in various industries for decades, although at relatively small scale. However, for the sole purpose of limiting climate change, these technologies have been put together in industrial scale (>1Mt CO2 captured and stored per year) in only a small number of installations.


Carbon Capture & Storage Technologies @ MIT

There are two primary types of carbon sequestration. Our program focuses on carbon dioxide capture and storage, where carbon dioxide is captured at its source (e.g., power plants, industrial processes) and subsequently stored in non-atmospheric reservoirs (e.g., depleted oil and gas reservoirs, unmineable coal seams, deep saline formations, deep ocean). The other type of carbon sequestration focuses on enhancing natural processes to increase the removal of carbon from the atmosphere (e.g., forestation).

Carbon Capture and Storage from Fossil Fuel Use Howard Herzog, Dan Golomb; Massachusetts Institute of Technology Laboratory for Energy and the Environment

Contribution to Encyclopedia of Energy, to be published 2004
Carbon sequestration can be defined as the capture and secure storage of carbon that would otherwise be emitted to, or remain, in the atmosphere. The focus of this paper is the removal of CO2 directly from industrial or utility plants and subsequently storing it in secure reservoirs. We call this carbon capture and storage (CCS). The rationale for carbon capture and storage is to enable the use of fossil fuels while reducing the emissions of CO2 into the atmosphere, and thereby mitigating global climate change. The storage period should exceed the estimated peak periods of fossil fuel exploitation, so that if CO2 re-emerges into the atmosphere, it should occur past the predicted peak in atmospheric CO2 concentrations. Removing CO2 from the atmosphere by increasing its uptake in soils and vegetation (e.g., afforestation) or in the ocean (e.g., iron fertilization), a form of carbon sequestration sometimes referred to as enhancing natural sinks, will only be addressed briefly.

Can we bury the carbon dioxide problem? Cosmos magazine; 11 Feb 2016

Overview of CCS methods and current practical work

Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants

This paper examines thermal efficiency penalties and greenhouse gas as well as other pollutant emissions associated with pulverized coal (PC) power plants equipped with postcombustion CO2 capture for carbon sequestration. We find that, depending on the source of heat used to meet the steam requirements in the capture unit, retrofitting a PC power plant that maintains its gross power output (compared to a PC power plant without a capture unit) can cause a drop in plant thermal efficiency of 11.3–22.9%-points. This estimate for efficiency penalty is significantly higher than literature values and corresponds to an increase of about 5.3–7.7 US¢/kWh in the levelized cost of electricity (COE) over the 8.4 US¢/kWh COE value for PC plants without CO2 capture. The results follow from the inclusion of mass and energy feedbacks in PC power plants with CO2 capture into previous analyses, as well as including potential quality considerations for safe and reliable transportation and sequestration of CO2. We conclude that PC power plants with CO2 capture are likely to remain less competitive than natural gas combined cycle (without CO2 capture) and on-shore wind power plants, both from a levelized and marginal COE point of view.

‘We’d have to finish one new facility every working day for the next 70 years’—Why carbon capture is no panacea Andy Skuce; Bulletin of the Atomic Scientists; 4 Oct 2016

We’re placing far too much hope in pulling carbon dioxide out of the air, scientists warn Chelsea Harvey; Washington Post; 13 Oct 2016

In the past decade, an ambitious — but still mostly hypothetical — technological strategy for meeting our global climate goals has grown prominent in scientific discussions. Known as “negative emissions,” the idea is to remove carbon dioxide from the air using various technological means, a method that could theoretically buy the world more time when it comes to reducing our overall greenhouse-gas emissions. Recent models of future climate scenarios have assumed that this technique will be widely used in the future. Few have explored a world in which we can keep the planet’s warming within at least a 2-degree temperature threshold without the help of negative-emission technologies. But some scientists are arguing that this assumption may be a serious mistake.
In a new opinion paper, published Thursday in the journal Science, climate experts Kevin Anderson of the University of Manchester and Glen Peters of the Center for International Climate and Environmental Research have argued that relying on the uncertain concept of negative emissions as a fix could lock the world into a severe climate-change pathway. “[If] we behave today like we’ve got these get-out-of-jail cards in the future, and then in 20 years we discover we don’t have this technology, then you’re already locked into a higher temperature level,” Peters said. Many possible negative-emission technologies have been proposed, from simply planting more forests (which act as carbon sinks) to designing chemical reactions that physically take the carbon dioxide out of the atmosphere. The technology most widely included in the models is known as bioenergy combined with carbon capture and storage, or BECCS.
First, the sheer amount of bioenergy fuel required to suit the models’ assumptions already poses a problem, Peters told The Washington Post. Most of the models assume a need for an area of land at least the size of India, he said, which prompts the question of whether this would reduce the area available for food crops or force additional deforestation, which would produce more carbon emissions.


US government abandons carbon-capture demonstration Jeff Tollefson; Nature; 5 Feb 2015

FutureGen project would have retrofitted a coal-fired power plant to collect and bury carbon emissions.

Carbon Capture Flops in California Despite Millions in Investment Lauren Sommer; KQED Science; 24 Jan 2016

despite millions in government investment, “carbon capture and storage,” as it’s called, has largely flopped in California. Faced with high costs and public opposition, several projects have failed to move beyond the planning stage.

Southern’s $6.9 Billion Clean Coal Plant Produces First Power Mark Chediak; Bloomberg; 13 Oct 2016

Southern Co.’s $6.9 billion “clean coal” power plant in Mississippi produced electricity for the first time. The Kemper station used synthetic natural gas, converted from Mississippi lignite coal, to produce its first batch of power, Southern’s Mississippi Power utility said in a statement Wednesday. The generation brings Southern a step closer to placing the plant into full commercial operations after years of delays and cost overruns. Once in service, it’ll be the first large-scale power plant in the U.S. to gasify coal and capture carbon before it’s released into the atmosphere. The U.S. Department of Energy provided $245 million in a grants for the project, which the coal industry had been banking on as a potential way toward developing cleaner-burning technologies as pollution limits take hold.

America’s first ‘clean coal’ plant is now operational — and another is on the way Chris Mooney; Washington Post; 10 Jan 2017

The first large scale U.S. “clean coal” facility was declared operational Tuesday — by the large energy firm NRG Energy and JX Nippon Oil & Gas Exploration Corp. Their Petra Nova project, not far outside of Houston, captured carbon dioxide from the process of coal combustion for the first time in September, and has now piped 100,000 tons of it from the plant to the West Ranch oil field 80 miles away, where the carbon dioxide is used to force additional oil from the ground. The companies say that the plant can capture over 90 percent of the carbon dioxide released from the equivalent of a 240 megawatt, or million watt, coal unit, which translates into 5,000 tons of carbon dioxide per day or over 1 million tons per year. They’re calling it “the world’s largest post-combustion carbon capture system.”
But there is another coal plant near completion in the United States that will also capture carbon dioxide — but using a very different approach. It’s the Kemper Plant, being operated by Mississippi Power, a subsidiary of Southern Co., and expected to be operational Jan. 31. This plant has been designed to turn lignite, a type of coal, into a gas called syngas, stripping out some carbon dioxide in the process. The syngas is burned for electricity and the CO2 is then again shipped to an oil field to aid in additional oil recovery. Thus, at Petra Nova the capturing of carbon occurs after the coal has been burned — or “post-combustion” — whereas at Kemper, it happens beforehand.


White Rose

The world’s first commercial scale, full chain, carbon capture and storage coal-fired power plant is being proposed by developer, Capture Power. The White Rose Carbon Capture and Storage Project (White Rose CCS Project), will comprise a state-of-the-art coal-fired power plant that is equipped with full carbon capture and storage technology. The project is intended to prove CCS technology at commercial scale and demonstrate it as a competitive form of low carbon power generation and as an important technology in tackling climate change. It will also play an important role in establishing a CO2 transportation and storage network in the Yorkshire and Humber area.
News: Government withdraws CCS Commercialisation Programme 25/11/2015
Today, following the Chancellor’s Autumn Statement, HM Government confirmed that the £1 billion ring-fenced capital budget for the Carbon Capture and Storage (CCS) Competition is no longer available. Commenting on the news that the budget for the CCS competition is no longer available, Leigh Hackett, CEO of Capture Power, said: “We are surprised and very disappointed by the Government’s decision to cancel the £1bn CCS Commercialisation Programme more than three years into the competition. “It is too early to make any definitive decisions about the future of the White Rose CCS Project, however, it is difficult to imagine its continuation in the absence of crucial Government support.”

Treasury cut to carbon capture will cost UK £30bn, says watchdog Damian Carrington; The Guardian; 20 Jul 2016

The government’s cancellation of a pioneering £1bn competition to capture and store carbon emissions may have pushed up the bill for meeting the UK’s climate targets by £30bn, according to a report from the UK’s official spending watchdog. The National Audit Office (NAO) report, published on Wednesday, says the move has delayed by a decade the deployment of carbon capture and storage (CCS) technology in the UK, which takes emissions from power stations and industry and buries them so they do not contribute to global warming. The Treasury was warned by officials about the cost implications and that the last-minute cancellation could cause damage to the government’s reputation with industry and the international community. But the government, amid cuts to spending, decided the competition was aiming to deliver CCS before it was necessary and cost-efficient to do so. Both the UK government’s official advisers, the Committee on Climate Change (CCC), and the UN’s climate panel have warned that the cost of tackling climate change will be doubled without CCS, as more expensive alternatives are needed instead. The UK is well placed to develop CCS, with access to depleted oil and gas fields in the North Sea to store CO2. But these now risk being shut down before CCS is developed, the NAO report said. The CCS competition axed in November was the second cancelled by government, with the first starting in 2007 and ending in 2011. The NAO said there is now “no viable way to achieve deep emissions reductions from the industrial sector in the near future”.

CCSA report

Lowest Cost Decarbonisation for the UK: The Critical Role of CCS Carbon Capture and Storage Association; Sep 2016

Report to the Secretary of State for Business, Energy and Industrial Strategy from the Parliamentary Advisory Group on Carbon Capture and Storage (CCS)

UK must move now on carbon capture to save consumers billions, says report Damian Carrington; The Guardian; 12 Sep 2016

The UK must immediately kickstart an industry to capture and bury carbon emissions in order to save consumers billions a year from the cost of meeting climate change targets, according to a high-level advisory group appointed by ministers. This requires the setting up of a new state-backed company to create the network needed to pipe the emissions into exhausted oil and gas fields under the North Sea, the group said.
Failing to deliver CCS would hugely increase the cost of tackling climate change, according to the government’s official climate advisors, the National Audit Office and the UN’s climate science panel.
CCS could also potentially enable hydrogen to solve the problem of cutting the emissions from the nation’s gas boilers and stoves, currently 25% of all emissions and a major factor in the UK’s imminent failure to meet clean energy targets.
Natural gas can be converted to hydrogen and the CO2 produced buried using CCS. The hydrogen, which produces only water when burned, could then replace the gas in the national grid. This could also provide fuel for hydrogen-powered cars, as well as cutting the significant air pollution caused by gas boilers.

Carbon Capture and Storage – time for the UK to get back on track Stephen Tindale; Climate Answers; 20 Oct 2016

A new report entitled Lowest Cost Decarbonisation for the UK: The Critical Role of CCS, argues that the UK government should drastically rethink its CCS policy, and in effect u-turn again to get back on track with CCS. A cross-party group, headed by Lord Oxburgh, leading geologist and ex-chair of Shell, was invited by previous Secretary of State for Energy and Climate Change Amber Rudd to assess the CCS options in the UK. They conclude that CCS is not only clearly achievable, with all aspects of the supply chain demonstrated, but also potentially cheaper than nuclear or renewable options. The novel nature of the technology however, combined with an insufficient carbon price, means that government, rather than industry, must be the driving force behind the technology’s development.

H21 Leeds City Gate

Executive Summary

Full Report

Watch our H21 Leeds City Gate film Northern Gas Networks; 12 Jul 2016

Ambitious plans to convert significant parts of the UK gas grid to be 100% hydrogen were launched by a project team led by Northern Gas Networks at an event in Westminster on 11 July 2016.
More than 200 MPs, government representatives, sustainable energy experts and academics from across the UK attended the launch of the H21 Leeds City Gate report, which calls for the gas grid to be converted to hydrogen, starting with the Leeds city region and then for conversion to take place across the country incrementally.
The report finds that converting the UK gas grid to hydrogen will be a major step towards meeting the UK’s carbon reduction targets. Currently, over 30% of all UK carbon emissions come from domestic heating and cooking. A UK-wide conversion to hydrogen gas will reduce heat emissions by a minimum of 73% as well as supporting decarbonisation of transport and localised electrical generation.


India's double first in climate battle Roger Harrabin; BBC; 3 Jan 2017

Two world-leading clean energy projects have opened in the south Indian state of Tamil Nadu. An industrial plant is capturing the CO2 emissions from a coal boiler and using the CO2 to make valuable chemicals. The industrial plant appears especially significant as it offers a breakthrough by capturing CO2 without subsidy. Built at a chemical plant in the port city of Tuticorin, it is projected to save 60,000 tonnes of CO2 emissions a year by incorporating them into the chemical recipe for soda ash - otherwise known as baking soda.
The chemical used in stripping the CO2 from the flue gas was invented by two young Indian chemists. They failed to raise Indian finance to develop it, but their firm, Carbonclean Solutions, working with the Institute of Chemical Technology at Mumbai and Imperial College in London, got backing from the UK's entrepreneur support scheme. Their technique uses a form of salt to bond with CO2 molecules in the boiler chimney. The firm says it is more efficient than typical amine compounds used for the purpose. They say it also needs less energy, produces less alkaline waste and allows the use of a cheaper form of steel - all radically reducing the cost of the whole operation.

Canada - Saskpower / Saskatchewan Boundary Dam

Boundary Dam Carbon Capture Project Saskpower

Media Gallery

Boundary Dam Fact Sheet: Carbon Dioxide Capture and Storage Project Carbon Capture & Storage Technologies @ MIT

IEA hails historic launch of carbon capture and storage project IEA; 1 Oct 2014

The IEA believes CCS will have to play a central role in an ambitious, climate-friendly future energy scenario, accounting for one-sixth of required emissions reductions by 2050. IEA analysis has shown that without significant deployment of CCS, more than two-thirds of current proven fossil-fuel reserves cannot be commercialised before 2050 if the increase in global temperatures is to remain below 2 degrees Celsius. Several CCS projects are under construction or in advanced stages of planning. Early 2015 should see the start of operations for another large power-CCS project in Kemper County, Mississippi. Further projects are currently under construction elsewhere in the United States and Canada plus Saudi Arabia and Australia.

Integrated Carbon Capture and Storage at Saskpower's Boundary Dam Power Station IEAGHG; Aug 2015

FOR SASKPOWER, owner and operator of the retrofitted Boundary Dam Power Unit 3 (BD3) that now incorporates carbon capture and storage (CCS), this event was the culmination of decades of work to continue operating coal-fired power-generating stations, while at the same time mitigating the climate change impact of associated air emissions. The CO2 captured at BD3 is geologically stored at two locations: in an oil reservoir approximately 1.4 kilometres deep at Cenovus’ CO2–EOR operation near Weyburn, Saskatchewan, and in a deep saline aquifer approximately 3.2 kilometres deep at the SaskPower Carbon Storage and Research Centre, located near the Boundary Dam Power Station. The latter geological storage site is the subject of the measurement, monitoring and verification (MMV) activities of the Aquistore Project that is managed by the Petroleum Technology Research Centre in Regina, Saskatchewan. SaskPower had forged ahead with design and construction of the BD3 ICCS retrofit well in advance of GHG Regulations being enacted in Canada, which came into effect on July 1, 2015. This was a strategic and environmentally-responsible decision to ensure continued use of lignite coal reserves in Saskatchewan that could last 250–500 years. The investment in the approx. 120 MW (net) BD3 power unit’s retrofit and carbon capture plant was approximately C$1.467 billion. This report explores the journey that SaskPower made from the 1980s to mid-2015 in pursuit of clean coal power generation. SaskPower pursued various technology options for carbon capture from oxyfuel combustion to amine solvent absorption that ultimately led to the decision to select the commercially unproven CANSOLV amine solvent carbon dioxide capture process. SaskPower then coupled that technology with Shell Cansolv’s proven sulphur dioxide capture process to simplify the capture plant operation and to further reduce emissions.

Canada switches on world's first carbon capture power plant Suzanne Goldenberg; The Guardian; 1 Oct 2014

Boundary Dam held up as first commercial-scale CCS plant and proof that coal-burning is compatible with cutting emissions Canada has switched on the first large-scale coal-fired power plant fitted with a technology that proponents say enables the burning of fossil fuels without tipping the world into a climate catastrophe. The project, the first commercial-scale plant equipped with carbon capture and storage technology, was held up by the coal industry as a real life example that it is possible to go on burning the dirtiest of fossil fuels while avoiding dangerous global warming. Saskatchewan’s state-owned electricity provider is due to cut the ribbon on the $1.3 billion Canadian project on Thursday.

SNC-Lavalin-built carbon capture facility has 'serious design issues': SaskPower Geoff Leo; CBC News; 27 Oct 2015

An internal SaskPower briefing note obtained by the NDP suggests the much-celebrated Boundary Dam carbon capture project near Estevan, Sask., has "serious design issues". The note goes on to say the company contracted to engineer, procure, and build the capture facility, SNC-Lavalin "has neither the will or the ability to fix some of these fundamental flaws." The note, dated Sept. 30, 2014, said SaskPower has already paid 97 per cent of the value of the three subcontracts SaskPower had with SNC — $533 million of $549 million. It says at the time SaskPower was withholding $6.5 million in payments from SNC because the Crown corporation was having to pay to correct problems with SNC's work.

Technology to Make Clean Energy From Coal Is Stumbling in Practice IAN AUSTEN; N Y Times; 29 Mar 2016

OTTAWA — An electrical plant on the Saskatchewan prairie was the great hope for industries that burn coal. In the first large-scale project of its kind, the plant was equipped with a technology that promised to pluck carbon out of the utility’s exhaust and bury it underground, transforming coal into a cleaner power source. In the months after opening, the utility and the provincial government declared the project an unqualified success. But the $1.1 billion project is now looking like a green dream. Known as SaskPower’s Boundary Dam 3, the project has been plagued by multiple shutdowns, has fallen way short of its emissions targets, and faces an unresolved problem with its core technology. The costs, too, have soared, requiring tens of millions of dollars in new equipment and repairs.

Enhanced Oil Recovery Can Oil Companies Save the World from Global Warming?] David Biello; Scientific American; 19 Apr 2016

Oil firms might pay to use CO2 emissions from power plants, but low petroleum prices could doom the effort



Negative emissions tested at world’s first major BECCS facility Carbon Brief; 31 May 2016

Decatur, Illinois, is a city built on corn. At the centre of its economy are two giant agribusinesses, Tate & Lyle and Archer Daniels Midland (ADM), which together grind thousands of bushels a day into syrups, sweeteners, ethanol fuel and other useful products. Thanks to the second of these companies, Decatur is also a city that is built on CO2 — literally. For the past nine years, ADM has been part of an ongoing experiment to capture the emissions from its ethanol plant and trap it in the layer of sandstone that lies beneath the Illinois corn belt.


New Carbon Capture Membrane Boasts CO2 Highways Dan Krotz; Berkeley Lab press release; 17 Mar 2016

A new, highly permeable carbon capture membrane developed by scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) could lead to more efficient ways of separating carbon dioxide from power plant exhaust, preventing the greenhouse gas from entering the atmosphere and contributing to climate change. The researchers focused on a hybrid membrane that is part polymer and part metal-organic framework, which is a porous three-dimensional crystal with a large internal surface area that can absorb enormous quantities of molecules.

Carbonate fuel cell

Exxon Has a Clever Way to Capture Carbon—If It Works Richard Martin; MIT Technology Review; 6 May 2016

Sticking a fuel cell in a smokestack could dramatically reduce emissions.

Non-thermal plasma field

Researchers: 150-year-old technology could provide ‘clean’ coal solution Kari Lydersen; MidWest Energy News; 16 Jun 2016

As coal advocates seek to keep their industry viable amid tighter restrictions on carbon emissions, an Illinois researcher says a new spin on a 150-year-old technology might hold the solution. Michael Garvin, an energy expert at the Illinois Institute of Technology, says a technology known as a non-thermal plasma field has shown promise after recent tests – reducing carbon emissions by more than 90 percent – at the Scrubgrass Power Plant in Pennsylvania, which burns dirty “waste coal” to make electricity. The company Carbon Conversion International (CCI) developed technology to pass air emissions through the plasma field to extract carbon dioxide, carbon monoxide, sulfur dioxide and nitrogen oxide. Another byproduct – oxygen – can be fed right back into the combustion chamber. Meanwhile the carbon is concentrated into its nearly elemental form, known as “carbon black,” and sold on the market where it is used for tires, rubber, plastics, printing inks and other applications.


A modest proposal for sequestration of CO2 in the Antarctic Judith Curry; Climate Etc; 24 Aug 2012

CO2 Snow Deposition in Antarctica to Curtail Anthropogenic Global Warming Ernest Agee, Andrea Orton, John Rogers; Journal of Applied Meteorology and Climatology; 25 Feb 2013

A scientific plan is presented that proposes the construction of carbon dioxide (CO2) deposition plants in the Antarctic for removing CO2 gas from Earth’s atmosphere. The Antarctic continent offers the best environment on Earth for CO2 deposition at 1 bar of pressure and temperatures closest to that required for terrestrial air CO2 “snow” deposition—133 K. This plan consists of several components, including
1) air chemistry and CO2 snow deposition,
2) the deposition plant and a closed-loop liquid nitrogen refrigeration cycle,
3) the mass storage landfill,
4) power plant requirements,
5) prevention of dry ice sublimation, and
6) disposal (or use) of thermal waste.
Calculations demonstrate that this project is worthy of consideration, whereby 446 deposition plants supported by sixteen 1200-MW wind farms can remove 1 billion tons (1012 kg) of carbon (1 GtC) annually (a reduction of 0.5 ppmv), which can be stored in an equivalent “landfill” volume of 2 km × 2 km × 160 m (insulated to prevent dry ice sublimation). The individual deposition plant, with a 100 m × 100 m × 100 m refrigeration chamber, would produce approximately 0.4 m of CO2 snow per day. The solid CO2 would be excavated into a 380 m × 380 m × 10 m insulated landfill, which would allow 1 yr of storage amounting to 2.24 × 10−3 GtC. Demonstrated success of a prototype system in the Antarctic would be followed by a complete installation of all 446 plants for CO2 snow deposition and storage (amounting to 1 billion tons annually), with wind farms positioned in favorable coastal regions with katabatic wind currents.

full text