Energy Futures

From ScienceForSustainability
Jump to: navigation, search

Proposed changes in energy supply to mitigate AGW.

David MacKay: Sustainable Energy Without the Hot Air

David MacKay's Sustainable Energy - Without The Hot Air discusses, with numerical estimates, the UK's various energy demands and sources of sustainable energy to supply them, and shows example plans for scenarios matching them. MacKay went on to work at the Department of Energy and Climate Change where he was involved in developing the Department's 2050 Pathways Calculator online application in which one can play with scenarios for achieving the UK's Climate Change Act commitment to 80% reduction in carbon emissions by 2050 through simulated changes in demand and supply, and their subsequent and more ambitious Global Calculator.

MacKay has been accused of being pro-nuclear by Jim Hickey, and the 2050 Pathways calculator has been accused of being pro-renewables by Roger Andrews who claims its assumptions regarding the storage requirements of intermittent renewables are unrealistically optimistic.

MacKay on solar

Solar energy in the context of energy use, energy transportation, and energy storage David J C MacKay

Taking the United Kingdom as a case study, this paper describes current energy use and a range of sustainable energy options for the future, including solar power and other renewables. I focus on the the area involved in collecting, converting, and delivering sustainable energy, looking in particular detail at the potential role of solar power.

DECC calculators

2050 Pathways classic version

Global calculator


4th assessment report

Energy supply. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change R.E.H. Sims, R.N. Schock, A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, H.B. Nimir, B. Schlamadinger, J. Torres-Martínez, C. Turner, Y. Uchiyama, S.J.V. Vuori, N. Wamukonya, X. Zhang, 2007:

5th assessment report

working group 3


Climate Change 2014 Synthesis Report Summary for Policymakers

Limiting warming with a likely chance to less than 2°C relative to pre-industrial levels would require substantial cuts in anthropogenic GHG emissions by mid-century through large-scale changes in energy systems and possibly land use. Limiting warming to higher levels would require similar changes but less quickly. Limiting warming to lower levels would require these changes more quickly (high confidence). Scenarios that are likely to maintain warming at below 2°C are characterized by a 40 to 70% reduction in GHG emissions by 2050, relative to 2010 levels, and emissions levels near zero or below in 2100 (Figure 3.2, Table 3.1). Scenarios with higher emissions in 2050 are characterized by a greater reliance on CDR technologies beyond mid-century, and vice versa. Scenarios that are likely to maintain warming at below 2°C include more rapid improvements in energy efficiency and a tripling to nearly a quadrupling of the share of zero- and low-carbon energy supply from renewable energy, nuclear energy and fossil energy with carbon dioxide capture and storage (CCS) or BECCS by the year 2050 (Figure 3.2b).


Timeline: The IPCC’s shifting position on nuclear energy Suzanne Waldman; Bulletin of the Atomic Scientists; 8 Feb 2015

The Intergovernmental Panel on Climate Change (IPCC) was formed in 1988 as an expert panel to guide the drafting of the United Nations Framework Convention on Climate Change, ratified in Rio de Janeiro in 1992. The treaty’s objective is to stabilize greenhouse gases in the atmosphere at a safe level. The IPCC has published a series of five multi-volume climate change assessment reports, the most recent of which was completed just a few months ago, as well as a number of special reports assessing specific issues. Over time, the organization has subtly adjusted its position on the role of nuclear power as a contributor to de-carbonization goals. Here is a timeline of the IPCC’s shifting attitude toward nuclear power.

Special Report on Renewables

[Special Report on Renewable Energy Sources and Climate Change Mitigation IPCC Working Group III; 2012

The IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) provides a comprehensive review concerning these sources and technologies, the relevant costs and benefits, and their potential role in a portfolio of mitigation options.
For the first time, an inclusive account of costs and greenhouse gas emissions across various technologies and scenarios confirms the key role of renewable sources, irrespective of any tangible climate change mitigation agreement.



(UK) Institute of Mechanical Engineers, UK 2050 Energy Plan (PDF) (2011 version)

Future Climate UK 2050 Energy Plan - The challenge continues Jul 2011

1 This report presents the ongoing work of the IMechE in support of the International Future Climate Project. Previous work was presented in our report: “UK 2050 Energy Plan” published in September 2009.
2 The primary basis for this project continues to be the objective of keeping the maximum global average temperature rise to within the guideline of 2oC. As a developed country, the UK has shown international leadership in enacting legal obligations to reduce total GHG emissions by 80% of 1990 values by 2050. The UK also has an obligation under the EU Renewable Energy Directive to achieve a target of 15% of energy from renewables by 2020. The overall renewables target for Europe is 20% by 2020.
3 The analysis work of DECC, led by Prof. David MacKay and the development of the DECC pathways software has shown clearly that to maintain a modern developed society in the UK it is necessary to build an energy supply system based on a combination of wind energy (the only renewable currently available at scale in the UK), nuclear power and gas/coal combinations abated by CCS. The major issue is that the current version of the DECC pathways model does not include pathway cost comparisons such as cost per tonne of CO2 abated as used by other models.
4 In total, other sources of energy such as biomass, solar, wave and tidal power, hydro, geothermal, waste heat recovery and energy from waste materials have an important role to play in providing a resilient energy system. Some of these may develop into major energy sources in the future.
5 As in our previous report we believe that doubling the existing electricity supply is at the limit of practical achievement of the current UK approach to infrastructure projects. This means that the demand side of the energy equation must reduce to balance with supply. This can be achieved through a combination of three activities listed in ease of implementation, behaviour change being the most difficult to achieve:
a) Efficiency improvements throughout the system
b) Time shifting of electrical demand.
c) Basic reduction in demand by energy conservation through modal shift and lifestyle change.
6 Our investigations suggest that the target reductions in emissions will not be achieved through energy efficiency measures and existing technologies alone but that new innovative technologies will be needed in all sectors of the energy supply and demand landscape.
Some of these innovations may already be recognised as important - such as marine energy - but based on past experience it is likely that other so far unrecognised technologies will need to be brought into play before 2050.
7 The cost of implementing the new infrastructure needed in the UK to deliver a new, balanced and low carbon energy economy is significant and estimated at around £500 billion between now and 2020. To obtain best cost for the new infrastructure it is important that technologies and their supporting industries reach critical mass. In evaluating the relative costs of the alternative infrastructure pathways it is critical that the benefits such as job creation are also taken into account.
8 We believe that the creation of so called Green Jobs will be a major motivator in driving forward the low carbon energy supply. The UK needs some 1million additional manufacturing jobs over the period to balance the economy. To reach this level of new job creation will require a conscious development of UK based supply chains so that the supply chain job multiplier comes into play.
9 It is recognized however that there should not be an overemphasis on reducing greenhouse gases as resource management in the broadest sense, population growth and the adequate provision of food and water are no less pressing global challenges for engineering in the coming decades.


The long term outlook for nuclear power
The annual electricity consumption increase of 1% will mean Britain's 59 GWe peak winter electricity demand increasing by 64% over the next 50 years to reach around 97 GWe by 2060.
Electrification of the transport sector may dramatically increase this further still. Faced with these energy realities the prospects for new nuclear build look very promising, but the long term outlook for nuclear power will actually depend on several major questions:
  • How far and how fast Britain decarbonises from an oil-based economy to an electricity-based economy
  • What impact the introduction of smartgrid technology and embedded generation may have on baseload electricity generation needs from large power stations
  • Whether clean coal with carbon capture and torage technology can become commercially feasible as an economic alternative to nuclear power?
  • To what extent renewable energy technologies are deployed at mass scale
  • And crucially, whether another Chernobyl meltdown nuclear accident occurs somewhere else in the world once again.
On Britain's present trajectory, a balanced low-carbon energy mix involving significant nuclear, gas, renewable and embedded generation technologies looks ideal.
If another Chernobyl happens early during a nuclear construction programme, further reactor orders would most likely be cancelled and nuclear build perhaps eventually abandoned. Accidents do of course happen. How well we design around them is what makes the difference between nuisance or catastrophe. Good engineering may well decide the outcome.


Britain’s most recent nuclear power station, Sizewell-B, began construction in 1987 and was commissioned into operation in 1995.


The 1986 Chernobyl nuclear accident played an important part in nuclear energy falling out of public favour but electricity privatisation was also a major cause.


Four factors have contributed to renewed interest in nuclear power; climate change fears, energy security concerns, gas price volatility and an energy crunch from nuclear and fossil-fuel power station retirements between 2015 and 2023.


The British government no longer operates its own nuclear power station fleet. Decisions on what nuclear power stations may be built in the future will be taken by commercial energy utility companies, who must convince their private sector shareholders.


Managing Flexibility Whilst Decarbonising the GB Electricity System - Executive Summary and Recommendations Energy Research Partnership; Aug 2015

The Energy Research Partnership has undertaken some modelling and analysis of the GB electricity system in the light of the carbon targets set by the Committee on Climate Change. Firstly a brief examination was made of the German and Irish markets with the hope of learning from their advanced penetration of variable renewables. Secondly a new model, BERIC, was written to simultaneously balance the need for energy, reserve, inertia and firm capacity on the system and its findings compared with simpler stacking against the load duration curve. The intention was to assess the need for flexibility on the system but some broader conclusions also emerged: A zero- or very low- carbon system with weather dependent renewables needs companion low carbon technologies to provide firm capacity
The modelling indicates that the 2030 decarbonisation targets of 50 or even 100 g/kWh cannot be hit by relying solely on weather dependent technologies like wind and PV alone. Simple merit order calculations have backed this up and demonstrated why this is the case, even with very significant storage, demand side measures or interconnection in support. There is a need to have a significant amount of zero carbon firm capacity on the system too - to supply dark, windless periods without too much reliance on unabated fossil. This firm capacity could be supplied by a number of technologies such as nuclear, biomass or fossil CCS


United States Mid-Century Strategy for Deep Decarbonization The White House; Nov 2016

Human activities, particularly CO2 emissions from fossil fuel combustion, have driven atmospheric greenhouse gas (GHG) concentration levels higher than at any time in at least 800,000 years (IPCC 2013). As a result, the Earth has warmed at an alarming rate over the past century, with average temperatures increasing by more than 0.8°C (1.5°F) (NCA 2014).
The consequences are already severe. Heat waves and droughts are more common, wildfire seasons are longer and fires larger and more costly, and extreme weather is becoming more intense and unpredictable. Left unchecked, from 2000 to 2100, global average temperature increases of 2 to 5°C (3.6 to 9°F) and sea level rise of two to four feet are likely, and much larger increases are possible (USGCRP 2014, IPCC 2013). Climate change will reduce long-run economic growth and jeopardize national security.
With the adoption of the Paris Agreement in December 2015, the world took a decisive step toward avoiding the most dangerous impacts of climate change. The Paris Agreement aims to hold the increase in the global average temperature to well below 2°C above pre-industrial levels and pursue efforts to limit the temperature increase to 1.5°C above pre-industrial levels. Consistent with this objective, Parties aim to balance GHG emissions sources and sinks in the second half of this century or, in effect, achieve net-zero global GHG emissions. Countries have submitted near-term targets to address GHG emissions, called “nationally determined contributions” or NDCs, and will review and extend these targets every five years. The Paris Agreement further invited countries to develop by 2020 “mid-century, long-term low greenhouse gas emission development strategies.” This document answers that call, laying out a strategy to deeply decarbonize the U.S. economy by 2050.
Carbon pricing: "an effective carbon price that starts at $20 per metric ton in 2017" and "A key priority for future policymakers is a transition to efficient carbon pricing over time, either by further optimizing an increasingly ambitious state/ local/sectoral approach, or by moving to an economy-wide policy mechanism. Carbon pricing will enable cost-effective emission reductions through market forces that encourage the development and deployment of the most cost-effective low carbon solutions across the economy. In any scenario, the United States will need complementary policies as well, including programs and standards that encourage cost-effective energy efficiency improvements and infrastructure investments that support the emergence of low carbon solutions."


IEA sees global energy transition

low-carbon technologies expected to generate almost half of the world's electricity by 2040, according to the International Energy Agency (IEA). Nuclear's share of global electricity generation is set to remain around the current level.


BP Energy Outlook to 2035

World Energy Mix in 2035 will have more nuclear because China will build it Next Big Future; 3 Apr 2016

According to the 2016 edition of the BP Energy Outlook, launched last month, BP says world energy consumption will grow by 34% between 2014 and 2035, from 12,928 million tonnes oil equivalent (toe) to 17,307 million toe. Some 95% of this growth will come from non-OECD countries.
The global use of nuclear energy is forecast to grow by 1.9% per year from 574.0 million toe in 2014 to 859.2 million toe in 2035, which is an overall increase of 50%.
Nuclear output in the European Union and North America is expected to decline 29% and 13%, respectively, as ageing reactors are gradually retired and "the economic and political challenges of nuclear energy stunt new investments". However, output in China is forecast to increase 11.2% annually. BP said Japan's nuclear output will reach 60% of its 2010 level by 2020 as reactors restart over the next five years.
Coal's share of global primary energy production is expected to drop from 30% in 2014 to 25% in 2035.

Nuclear's share of primary energy to rise, says BP World Nuclear News; 10 Mar 2016

While global energy demand is expected to grow by 34% between 2014 and 2035, nuclear power generation will grow 50% in total over the same period, according to the latest Energy Outlook from oil and gas giant BP.

mix - plans

Steve Holliday, CEO National Grid: “The idea of large power stations for baseload is outdated”

Let’s Run the Numbers: Nuclear Energy v. Wind and Solar Mike Conley & Tim Maloney; The Energy Reality Project; 17 Apr 2015

  • It would cost over $29 Trillion to generate America’s baseload electric power with a 50 / 50 mix of wind and solar farms, on parcels of land totaling the area of Indiana. Or:
  • It would cost over $18 Trillion with Concentrated Solar Power (CSP) farms in the southwest deserts, on parcels of land totaling the area of West Virginia. Or:
  • We could do it for less than $3 Trillion with AP-1000 Light Water Reactors, on parcels totaling a few square miles. Or:
  • We could do it for $1 Trillion with liquid-fueled Molten Salt Reactors, on the same amount of land, but with no water cooling, no risk of meltdowns, and the ability to use our stockpiles of nuclear “waste” as a secondary fuel.


  • Steel
  • Concrete
  • CO2 (from material production and transport)
  • Land area
  • Deathprint (casualties from power production)
  • Carbon karma (achieving CO2 break-even)
  • Construction cost

Do The Math

100% Renewables / non-nuclear plans *


See also Nuclear advocacy

Why James Hansen might be underestimating nuclear energy’s growth potential and why Joe Romm is wrong

A Roadmap for U.S. Nuclear Energy Innovation

Nuclear power paves the only viable path forward on climate change James Hansen, Kerry Emanuel, Ken Caldeira and Tom Wigley

Decarbonising UK Power Generation – The Nuclear Option Energy Matters; 29 Apr 2016

Guest Post by Andy Dawson who is an energy sector systems consultant and former nuclear engineer.
How to decarbonise UK Power generation is a topic of heated debate, with renewables enthusiasts often keen to argue that there are a range of obstacles to the use of nuclear generation to meet more than a small proportion of total demand. Reasons cited are availability of space/sites, grid integration and the challenges of meeting variable demand. So, is an all-nuclear UK grid (with the small sleight of hand of pumped storage hydro in support) potentially viable? I’ll set out an argument that it is indeed so, and more so that it comfortably exceeds any current carbon intensity targets. The basic concepts arose from discussion on the website of the “Guardian” newspaper about the relative strength of fit between pumped storage on one hand, and nuclear or renewables on the other. That led me to do some basic numbers on how much pumped storage hydro (hereafter PSH) you’d need to meet UK daily demand variations on the assumption of a steadily generating nuclear fleet underpinning it. The first pass surprised me on how relatively close we were in terms of total PSH capacity (and in how few nuclear units basic demand could be supplied).

Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data Staffan A. Qvist, Barry W. Brook; PLOS one; 13 May 2015

The World Really Could Go Nuclear David Biello; Scientific American; 14 Sep 2015

In just two decades Sweden went from burning oil for generating electricity to fissioning uranium. And if the world as a whole were to follow that example, all fossil fuel–fired power plants could be replaced with nuclear facilities in a little over 30 years. That's the conclusion of a new nuclear grand plan published May 13 in PLoS One. Such a switch would drastically reduce greenhouse gas emissions, nearly achieving much-ballyhooed global goals to combat climate change. Even swelling electricity demands, concentrated in developing nations, could be met. All that's missing is the wealth, will and wherewithal to build hundreds of fission-based reactors, largely due to concerns about safety and cost. "If we are serious about tackling emissions and climate change, no climate-neutral source should be ignored," argues Staffan Qvist, a physicist at Uppsala University, who led the effort to develop this nuclear plan. "The mantra 'nuclear can't be done quickly enough to tackle climate change' is one of the most pervasive in the debate today and mostly just taken as true, while the data prove the exact opposite."


Why nuclear power will never supply the world's energy needs

Derek Abbott, Professor of Electrical and Electronic Engineering at the University of Adelaide in Australia, has concluded that nuclear power cannot be globally scaled to supply the world’s energy needs for numerous reasons