Breyer-LUT

From ScienceForSustainability
Jump to navigation Jump to search


Christian Breyer, Professor of Solar Economy at Lappeenranta University of Technology in Finland, and colleagues have produced a simulation which, they claim, shows that the whole world's electricity supplies could be provided by wind and solar, with some gas and enormous amounts of storage.

Simulation brings global 100% renewable electricity system alive for the first time Lappeenranta University of Technology; 3 Nov 2016

A new model developed by Lappeenranta University of Technology (LUT) shows how an electricity system mainly based on solar and wind works in all regions of the world. It shows the functioning of an electricity system that fulfils the targets set by the Paris agreement by using only renewable energy sources.

The global Internet of Energy Model visualizes a 100 percent renewable energy system (100%RE) for the electricity sector for 2030. It can do this for the entire world which, in the model, has been structured into 145 regions, which are all visualised, and aggregated to 9 major world regions.

"With the simulation, anyone can explore what a renewable electricity system would look like. This is the first time scientists have been able to do this on a global scale." says Christian Breyer, LUT Solar Economy Professor and a leading scientist behind the model.

The model is designed to find the most economical solution for a renewable electricity system. The model shows how the supply of electricity can be organised to cover the electricity demand for all hours of the year. This means that best mix of renewable energy generation, storage and transmission components can be found to cover the electricity demand, leading to total electricity cost roughly between 55 and 70 euros per megawatt-hour for all 9 major regions in the world.

But the story does not end here. The researchers have ambitious goals to develop the model further. Future upgrades will go from looking only at the electricity sector to showing the full energy sector, including heat and mobility sectors. The model will also describe how to transition from the current energy system towards a fully sustainable one.

Global energy model solely reliant on renewables realistically simulated Jack Loughran; IET Engineering & Technology; 10 Nov 2016

An electricity grid system 100 per cent based on renewable energy production that works in all regions of the world has been successfully simulated using a complex computer model. Created by a team at the Lappeenranta University of Technology in Finland, it demonstrates how an electricity system that fulfils the targets set by the Paris Agreement by using only renewable energy sources could work.

This means that best mix of renewable energy generation, storage and transmission components can be found to cover the electricity demand, leading to total electricity cost roughly between 55 and 70 euros per megawatt-hour for all nine major regions in the world.

But the story does not end here. The researchers have ambitious goals to develop the model further. Future upgrades will go from looking only at the electricity sector to showing the full energy sector, including heat and mobility sectors.

simulation

slideshow presentation


Global Energy System based on 100% Renewable Energy - Power Sector Manish Ram, Dmitrii Bogdanov, Arman Aghahosseini, Ayobami Oyewo, Ashish Gulagi, Michael Child, Hans-Josef Fell / Christian Breyer; Lappeenranta University of Technology; 2017

Abstract

Technical Report "Global Energy System based on 100% Renewable Energy – Power Sector", published at the Global Renewable Energy Solutions Showcase event (GRESS), a side event of the COP23, Bonn, November 8, 2017 A global transition to 100% renewable electricity is feasible at every hour throughout the year and more cost effective than the existing system, which is largely based on fossil fuels and nuclear energy. Energy transition is no longer a question of technical feasibility or economic viability, but of political will. Existing renewable energy potential and technologies, including storage can generate sufficient and secure power to cover the entire global electricity demand by 2050 . The world population is expected to grow from 7.3 to 9.7 billion. The global electricity demand for the power sector is set to increase from 24,310 TWh in 2015 to around 48,800 TWh by 2050. Total levelised cost of electricity (LCOE) on a global average for 100% renewable electricity in 2050 is 52 €/MWh (including curtailment, storage and some grid costs), compared to 70 €/MWh in 2015. Solar PV and battery storage drive most of the 100% renewable electricity supply due to a significant decline in costs during the transition. Due to rapidly falling costs, solar PV and battery storage increasingly drive most of the electricity system, with solar PV reaching some 69%, wind energy 18%, hydropower 8% and bioenergy 2% of the total electricity mix in 2050 globally. Wind energy increases to 32% by 2030. Beyond 2030 solar PV becomes more competitive. Solar PV supply share increases from 37% in 2030 to about 69% in 2050. Batteries are the key supporting technology for solar PV. Storage output covers 31% of the total demand in 2050, 95% of which is covered by batteries alone. Battery storage provides mainly short-term (diurnal) storage, and renewable energy based gas provides seasonal storage. 100% renewables bring GHG emissions in the electricity sector down to zero, drastically reduce total losses in power generation and create 36 million jobs by 2050. Global greenhouse gas emissions significantly reduce from about 11 GtCO2eq in 2015 to zero emissions by 2050 or earlier, as the total LCOE of the power system declines. The global energy transition to a 100% renewable electricity system creates 36 million jobs by 2050 in comparison to 19 million jobs in the 2015 electricity system. Operation and maintenance jobs increase from 20% of the total direct energy jobs in 2015 to 48% of the total jobs in 2050 that implies more stable employment chances and economic growth globally. The total losses in a 100% renewable electricity system are around 26% of the total electricity demand, compared to the current system in which about 58% of the primary energy input is lost.

Analysis / criticism of LUT plan

The Lappeenranta renewable energy model – is it realistic? Roger Andrews; Energy Matters; 8 Mar 2017

No data to back up the 55-70 euros/MWh generation cost estimate are provided.

According to my rough calculations Europe would have to install an additional 500GW of PV and 900GW of wind to achieve LUT’s 2030 generation mix – and connect it all to a heavily beefed-up grid – in little more than a decade.

Britain: energy mix will require approximately 250GW of wind capacity and 70GW of solar capacity along with maybe 35GW of “other” capacity, about 15GW of which will be CCGTs and OCGTs. Battery storage requirements are around 65GWh with a peak charge requirement of 10.5MW.

France: Approximately 230GW of wind capacity and 90GW of solar capacity will be needed along with maybe 50GW of “other” capacity, about 13GW of which will be CCGTs and OCGTs. Battery storage requirements are around 90GWh with a peak charge of 14.3GW

Germany: Approximately 220GW of wind capacity and 150GW of solar capacity will be needed along with maybe 60GW of “other” capacity, about 25GW of which will be CCGTs and OCGTs. Battery storage requirements are around 135GWh with a peak charge of 21GW

The LUT model matches fluctuations in wind and solar generation to demand largely by varying export and imports, as evidenced by the strong inverse relationship between generation and imports/exports in Britain, France and Germany shown in Figures ...

By adopting this approach the LUT model assumes that every country in Europe, regardless of size, can balance its erratic renewables generation against demand the same way Denmark does it. Even the Danes admit they can do this only because they are a bit player on the Nordic Grid. For the approach to work on the large scale power deficits in one area must be offset by surpluses in another, which will not happen with solar because when it’s dark in one part of Europe it will be dark or getting dark everywhere else too. It probably won’t happen with wind either. Previous Energy Matters posts have demonstrated how wind lulls in Europe extend over large areas, leaving everyone with power deficits. Nevertheless the LUT model reportedly achieves a balance, so next we will look into the question of how it achieves i

I considered Britain, France and Germany as one single country (hereafter BFG)

The power transfers between BFG and surrounding countries are very large, and in Switzerland and Denmark on May 14 they approach or exceed the country’s total generation. Switzerland on November 23 is expected to absorb ten times as much electricity as it generates. The Czech Republic generates three times as much electricity at 11am on May 14 as it does at 7pm on November 23 while neighboring Poland generates the same amount. Results like these are not credible. The LUT model is bending the data beyond the limits of reality to make things balance.

Interconnector capacity: According to the LUT hourly data Britain will export up to 44.8GW, France up to 66.1GW and Germany up to 54.8GW in 2030, and interconnectors must be sized accordingly. Britain presently has only ~3GW of interconnector capacity with the continent while France and Germany have ~14 and ~22 GW respectively of interconnections with each other and with surrounding countries. So to match the LUT export totals Germany would have to add approximately 30GW, Britain 40GW and France 50GW of interconnectors. Again, it will be effectively impossible to install such enormous amounts of additional interconnector capacity in the time available.

Battery Storage: The LUT hourly data contemplate that Britain, France and Germany between them will have approximately 300GWh of battery storage in 2030. This much storage would keep the electricity flowing in these countries for only an hour or so during peak demand periods, so we can safely assume that its purpose is short-term load following. But 300GWh of lithium-ion batteries at current prices would cost upwards of 100 billion euros, and this is for Britain, France and Germany only. Assuming similar levels of battery storage for the other countries in the world that LUT has developed plans for would raise battery costs well into the trillions. It’s also questionable whether this many batteries could even be assembled and installed by 2030. After years of effort worldwide installed battery storage capacity is still down in the hundreds of MWh range –several orders of magnitude less than the 2030 capacities required by the LUT plan.

The Lappeenranta Internet of Energy in Europe Euan Mearns; Energy Matters; 22 Mar 2017

Is the Lappeenranta IOE Wind Model Realistic? Euan Mearns; Energy Matters; 25 Mar 2017

The Lappeenrata University of Technology (LUT) Internet of Energy (IOE) model for Europe aims to provide a 100% renewable electricity system costing €55 to €70 per MWh by 2030. A feature of the model are annualised wind profiles that plateau at capacity production which look nothing like the profiles of the current wind carpets. The profiles have the appearance of being curtailed, however, Professor Breyer who heads the LUT IOE team has explained that their model uses “weak turbines” that hit capacity production at lower wind speeds of 11 ms-1 compared with 14 ms-1 today. This is is combined with using taller towers with 160 m hub heights allowing the turbines to access stronger and more continuous wind. Tall towers today are about half that height. The result is that the LUT IOE wind turbines produce twice the energy of today’s – according to the model (Figures 6, 8, 10 and 12).

Solar Power Europe and connections with fossil fuel industry

In a twitter thread Adam Blazowski comments on the sponsorship by the fossil fuel industry of Breyer and LUT's partner Solar Power Europe.