100% renewables

From ScienceForSustainability
Jump to navigation Jump to search


There are various claims that individual countries, or even the whole world, could obtain all their electricity - or even their whole energy supplies - from various combinations of low-carbon "renewable" sources, excluding nuclear energy, carbon capture and storage and, usually, biomass. Reasons given for excluding nuclear energy range from general unquantified concerns about "safety", claims that nuclear is not a low-carbon source, and assertion that use of nuclear energy will lead to nuclear war.

All proposed scenarios depend heavily on intermittent sources of renewable energy and can be categorised by how they propose to try to solve the problem of matching intermittent supplies to demand, and to what extent they quantify the measures they propose to do this. At one extreme Greenpeace based its 2012 energy [r]evolution on an assumption that the IT industry would somehow come up with a way of making demand match supply. At the other extreme Zero Carbon Britain offers a detailed, quantified plan based on converting excess intermittent electricity to storable chemical fuels. Between these extremes are proposals which depend on more or less plausible combinations of very long distance transmission of huge amounts of energy, prodigious amounts of storage and/or dispatchable hydro.

Few of these proposals have been published in the scientific literature or by recognised expert bodies. Of those which have, and which have been examined by the IPCC and other experts, none has been found to be generally satisfactory.

Jacobson et al

The best-known proponent of what he calls "100% WWS" (100% Wind, Water and Sun) is Mark Z. Jacobson. Jacobson is a Professor at Stanford University and a recognised expert on the effects on climate of aerosols - fine solid particles or liquid droplets suspended in the atmosphere.

Jacobson has in recent years advocated 100% renewables energy scenarios for the United States and, later, worldwide. His proposals have been enthusiastically received by politicians, celebrities and environmental organisations, but widely criticised by energy experts and commentators. Most notoriously when Renewables expert Christopher Clack and 20 others published a paper criticising and rebutting Jacobson's claims Jacobson responded by suing the National Academy of Sciences for publishing the paper, and the Clack - the only author without institutional backing - personally for $10Million.

Jacobson rejects nuclear energy partly because he claims that expanding nuclear energy will inevitably lead to nuclear war causing cities to burn, releasing CO2.

Breyer / Lappeenranta University of Technology

Another 100% renewables plan is by Christian Breyer and colleages at the Lappeenranta University of Technology in Finland. Breyer-LUT

Zero Carbon Britain (CAT)

The Centre for Alternative Technology (CAT)'s Zero Carbon Britain includes a plan for producing reliable electricity supplies using intermittent renewables, converting excess electricity into methane which can be stored and converted back into electricity when needed.

French Environment and Energy Agency (ADEME)

French Environment and Energy Agency (ADEME)'s Vers un mix eléctrique 100% renouvelable en 2050 (and response "Analysis and comments on the report: towards a mix 100% renewables in 2050" - in French).

Commentary & criticism of ZCB, ADEME etc

Critical analysis of ADEME and CAT/ZCB scenarios with particular reference to energy storage in: Renewable Energy Storage and Power-To-Methane Roger Andrews; Energy Matters blog; 25 Jun 2015

The Renewables Future – A Summary of Findings Roger Andrews; 13 Aug 2015

Elliston, Diesdendorf and MacGill: Australia

Simulations of scenarios with 100% renewable electricity in the Australian National Electricity Market Ben Elliston, Mark Diesendorf, Iain MacGill

Dispelling the nuclear 'baseload' myth: nothing renewables can't do better! Mark Diesendorf; The Ecologist; 10 Mar 2016

The main claim used to justify nuclear is that it's the only low carbon power source that can supply 'reliable, baseload electricity', writes Mark Diesendorf - unlike wind and solar. But not only can renewables supply baseload power, they can do something far more valuable: supply power flexibly according to demand. Now nuclear power really is redundant.

Commentary & criticism of Elliston, Diesdendorf and MacGill

Critique of the proposal for 100% renewable energy electricity supply in Australia Dr Ted Trainer; Brave New Climate blog; 2 Jun 2014

Elliston and Riesz

Future high renewable electricity scenarios – Insights from mapping the diversity of near least cost portfolios B. Elliston, J. Riesz

This paper reports on future electricity generation scenarios modelled using NEMO, a model that applies a genetic algorithm to optimise a mix of simulated generators to meet hourly demand profiles, to the required reliability standard, at lowest overall industry cost. The modelling examined the least and near least cost technology portfolios for a scenario that limited emissions to approximately one quarter of those from the Australian National Electricity Market (NEM) at present. It was found that all the near least cost solutions (within 15% of the least cost solution) involved wind capacity in the range of 31-51 GW, with 98.8% of these near least cost portfolios having at least 35 GW of wind installed. In contrast, the near least cost solutions consistently involved much lower quantities of PV, with 90% of the near least cost portfolios having less than 4.9 GW of installed PV capacity. This suggests that policies to promote high levels of wind deployment and grid integration are likely to be important for achieving low cost, low emissions outcomes, while policies to promote significant PV deployment may be less warranted in the absence of cost effective supporting technologies, such as battery storage or significant demand side participation.
3/4 of peer-rev'd refs are author's own. Other is BZE which proposes Australia abandon aviation by 2020. - Oscar Archer ‏@ActinideAge

Greenpeace / Brainpool

Wind power with 'windgas' is cheaper and greener than Hinkley Point C nuclear plant Ecologist

STUDIES ABOUT THE PLANNED BRITISH NUCLEAR POWER PLANT HINKLEY POINT C Energy Brainpool

  • Wind power as an alternative to nuclear power from Hinkley Point C: At a lower cost / Short analysis an behalf of Greenpeace Energy eG, January 2016 (German only)
  • Wind power as an alternative to nuclear power from Hinkley Point C: A cost comparison / Short analysis an behalf of Greenpeace Energy eG, January 2016 (English)
  • Effects of Hinkley Point C on the german electricity market / Study on behalf of Greenpeace Energy eG, July 2015 (German only)
  • Level of public funding of Hinkley Point C / Short analysis an behalf of Greenpeace Energy eG, June 2015 (German only)

WIND POWER AS AN ALTERNATIVE TO NUCLEAR POWER FROM HINKLEY POINT C: A COST COMPARISON A short analysis commissioned by Greenpeace Energy in Germany

What happens when the wind doesn’t blow? Southern Alliance for Clean Energy blog

Greenpeace

energy [r]evolution 2012

Technological opportunities Changes to the power system by 2050 will create huge business opportunities for the information, communication and technology (ICT) sector. A smart grid has power supplied from a diverse range of sources and places and it relies on the gathering and analysis of a lot of data. Smart grids require software, hardware and data networks capable of delivering data quickly, and of responding to the information that they contain. Several important ICT players are racing to smarten up energy grids across the globe and hundreds of companies could be involved with smart grids.
There are numerous IT companies offering products and services to manage and monitor energy. These include IBM, Fujitsu, Google, Microsoft and Cisco. These and other giants of the telecommunications and technology sector have the power to make the grid smarter, and to move us faster towards a clean energy future. Greenpeace has initiated the ‘Cool IT’ campaign to put pressure on the IT sector to make such technologies a reality.

energy [r]evolution 2015

5th Edition
  • Project manager and lead author Dr. Sven Teske, Greenpeace International
  • Global Wind Energy Council steve sawyer
  • SolarPowerEurope oliver schäfer
  • research & co-authors
  • Overall Modelling: dlr, institute of engineering thermodynamics, systems analysis and technology assessment, stuttgart, germany: dr. thomas Pregger, dr. sonja simon, dr. tobias naegler

2030 Energy Scenarios report

In early 2015 we were commissioned by Greenpeace UK to design and test an ambitious, low carbon 2030 energy scenario using the 'Smart Household Energy Demand (SHED) model. It shows that it is possible for the UK's power system to be nearly 90% renewably delivered by 2030, while electrifying 25% of all heating demand - and putting 12.7 million electric cars on the road. But only if we can cut demand for space heating by 57% in the next 15 years - a major challenge.

4 ways the UK can get almost all its power from renewables – without Hinkley

Energy Revolution 2015

Skeptical science

Can renewables provide baseload power? based on

Krugman

Planet on the Ballot Paul Krugman; NY Times; 29 Feb 2016

Paul Krugman Needs an Energy Reality Check Robert Bryce; National Review; 3 Mar 2016

Chivers / Two Energy Futures

Two Energy Futures (links in site don't work - reported to Danny Chivers 03/05/2019)

The stuff problem Danny Chivers; New Internationalist blog;

+links

Scott Cato / South West England

Power To Transform index page

Summary leaflet – easy to read pages

Summary leaflet – full spread

A report commissioned by Molly Scott Cato MEP reveals:
  • The region has the renewable energy resources to meet more than 100% of its total energy needs, including replacement of liquid fuels.
  • A move to a renewable energy economy has the potential to create 122,000 jobs, an increase in employment of 4.5% across the region.
  • One third of energy needs can be met from marine and inshore estuarine tidal energy, with the remaining two thirds from onshore renewables.
  • The cost of delivering 100% renewable energy to the region would be around £60 billion. The equivalent cost of delivering 100% of energy needs from nuclear would be around £83 billion.
  • Renewables offer opportunities for ushering in a Smart Grid Energy Storage system that would balance the intermittency of some renewable technologies
  • Local Smart Grids developed in conjunction with renewable energy resources would reduce the need for large scale pylons and transmission systems. In the South West we can demonstrate just how much better a society powered by clean, green energy would really be. As is so often the case, the right environmental choice will also ensure greater economic justice and help us build flourishing local economies. Locally produced renewable energy will bring a huge economic boost and new jobs and benefit in particular some of our more deprived rural economies. The South West of England has some of the world’s best renewable energy resources, in great abundance and great variety. All that holds us back from a renewable energy revolution and energy security is a failure of political will. Our politicians must progress beyond the fossil-fuel past into the sunny uplands of our shared renewable future.

The power to transform the South West: How to meet the region’s energy needs through renewable energy generation

Researched and written by The Resilience Centre
Commissioned by Molly Scott Cato MEP
Funded by the Green/EFA group in the European Parliament
  1. The South West region has the renewable energy resources to meet more than 100% of its total energy needs, including replacement of liquid fuels and electrifying railways.
  2. We could generate 67,448,817 MWhrs/year of renewable energy as 42,690,806 MWehrs of electrical energy and 24,758,010 MWth of thermal energy (67,449 GWhrs/year) from 31,804 MW of Generating Capacity (thermal & electricity).
  3. [the report omits a point 3]
  4. 34% of energy needs can be met from marine and inshore estuarine tidal energy, and 66% from onshore renewables.
  5. To enable the devenopment of renewable energy generation we would suggest installing 12,051 MWe capacity of smart grid energy storage to balance intermittency of renewables and allow demand led local smart grids to be developed.
  6. This energy storage would provide 19,281,000 MWhrs/year or 29% of energy as demand required.
  7. An estimated 122,000 full time equivalent jobs could be created if we deliver and maintain this renewable energy generation regionally, an increase in employment of 4.5% for the region.
  8. We estimate that the capital cost of delivering such a programme would be £59,484m, including £8,784m on Smart Grid energy storage. This is 72% of equivalent nuclear costs for delivering the same amount of energy.
  9. The equivalent cost of delivering 100% of the South West energy needs from nuclear is £82,510m or 138% of the equivalent cost of delivering with renewable energy.
  10. Renewables costs provide for a local smart grid with energy storage and flexibility to meet spikes and drops in demand and reduce need for large scale pylons and transmission systems.
  11. Renewables costs include £500m/year investment in local/regional grid reinforcement and upgrade, equivalent to an increased annual expenditure on grid upgrade and management of 64% each year.
  12. The potential annual value added for delivering the constrained renewable energy resources of the South West would be £4,286m/year, equivalent to an annual growth rate of 4.0% year on year and equivalent to 48% of the total value of the tourism industry and 87% of the aerospace and defence industry in the South West

UK National Infrastructure Commission

The National Infrastructure Commission’s plan for a renewable UK Roger Andrews; Energy Matters; 19 Jul 2018

The National Infrastructure Commission (NIC) was launched by then-chancellor George Osborne in October 2015 to “think dispassionately and independently about Britain’s long-term infrastructure needs in areas like transport, energy, communication, flood defence and the like.” Well, the NIC has now thought dispassionately and independently about energy and has concluded that the UK can meet its 2050 decarbonization goals with either a mostly nuclear or mostly renewable generation mix, but that “wind and solar could deliver the same generating capacity as nuclear for the same price, and would be a better choice because there was less risk”. Here we take a brief look at this renewables-beats-nuclear option to see whether it might work.

USA

Nuclear Energy vs. Wind and Solar Mike Conley & Tim Maloney; 17 Apr 2015

Here's how much of the US would need to be covered in wind turbines to power the nation Leanna Garfield ; Business Insider UK; 26 Sep 2016

Though the US invested $14.5 billion in wind-power project installations last year, wind farms still provide less than 5% of the nation's energy, according to the American Wind Energy Association. AWEA's manager of industry data analysis, John Hensley, did the following math: 4.082 billion megawatt-hours (the average annual US electricity consumption) divided by 7,008 megawatt-hours of annual wind energy production per wind turbine equals approximately 583,000 onshore turbines. In terms of land use, those 583,000 turbines would take up about the total land mass of Rhode Island, Hensley says, because wind projects typically require 0.74 acres of land per megawatt produced.
Hensley considered that the average wind turbine has an output of 2 megawatts of power and is 40% efficient.
For comparison, solar projects operate at an average of 20% efficiency
When you multiply a wind turbine's average potential (2 megawatts) by its 40% annual energy efficiency, 365 days a year, you get Hensley's estimate of the megawatt-hours of energy production each turbine can produce (7,008).

David Roberts

The Eastern US could get a third of its power from renewables within 10 years. Theoretically. David Roberts; Vox; 31 Aug 2016

Model of Eastern Interconnect can accommodate 30 percent "variable generation" (VG)

David Roberts on the latest NREL 30% wind and solar study Russ Finley; Biodiversivist; 5 Sep 2016

consider this article to be a comment under David's article: The Eastern US could get a third of its power from renewables within 10years. Theoretically, which has no comment field.

Australia

100% renewable electricity in Australia Andrew Blakers, Bin Lu, Matthew Stocks; Energy; 29 May 2017

An hourly energy balance analysis is presented of the Australian National Electricity Market in a 100% renewable energy scenario, in which wind and photovoltaics (PV) provides about 90% of the annual electricity demand and existing hydroelectricity and biomass provides the balance. Heroic assumptions about future technology development are avoided by only including technology that is being deployed in large quantities (>10 Gigawatts per year), namely PV and wind.
Additional energy storage and stronger interconnection between regions was found to be necessary for stability. Pumped hydro energy storage (PHES) constitutes 97% of worldwide electricity storage, and is adopted in this work. Many sites for closed loop PHES storage have been found in Australia. Distribution of PV and wind over 10e100 million hectares, utilising high voltage transmission, accesses different weather systems and reduces storage requirements (and overall cost).
The additional cost of balancing renewable energy supply with demand on an hourly rather than annual basis is found to be modest: AU$25e30/MWh (US$19e23/MWh). Using 2016 prices prevailing in Australia, the levelised cost of renewable electricity (LCOE) with hourly balancing is estimated to be AU$93/MWh (US$70/MWh). LCOE is almost certain to decrease due to rapidly falling cost of wind and PV

100% renewable electricity in Australia Euan Mearns / Roger Young; Energy Matters; 1 Nov 2017

The object of his post, which was originally submitted as a comment, is an academic study published by Blakers et al that claims Australia can become a 100% renewables nation at relatively low cost. Roger Young questions the modelling work presented and asserts that the storage requirement has been under-estimated by a factor of 12 which naturally has a profound impact on the cost estimates.

Australia, energy storage and the Blakers study Roger Andrews; Energy Matters; 13 Nov 2017

Roger Young’s recent post focused on the question of whether the energy storage requirements listed in Prof. Andrew Blakers’ study “100% renewable electricity in Australia” were realistic, but at the time no hard numbers on exactly how much storage Prof. Blakers’ scenarios would require were available. I have now come up with some reasonably hard numbers by applying Blakers’ scenarios to recent Australian grid data. Because the grid data cover a period of only a few months these numbers are not fully diagnostic, but they are sufficient to confirm Roger Young’s conclusion that the Blakers study seriously underestimates storage requirements.

Wind and solar on Thursday Island Roger Andrews / Mark; Energy Matters; 8 Feb 2018

In this post Mark documents the results of wind and solar data from Thursday Island that leaves him sceptical of the claims made by Prof. Andrew Blakers that wind generation spikes in Queensland will offset wind generation lulls in the rest of Australia
While rummaging around the internet to see if I could find any information on the performance of wind farms in Queensland (and especially in Far North Queensland – Andrew Blakers’ supposed panacea for the rather more correlated wind farm outputs in the NEM area), I came across Thursday Island, which installed a small two turbine wind farm 20 years ago. Thursday Island is about as FNQ as you can get – about 25 miles into the Torres Strait that separates Australia and Papua New Guinea. The bonanza came when I encountered a pamphlet from Harwell complete with charts showing monthly performance of the wind farm and its contribution to local power demand.

IRENA 2018

Global Energy Transformation International Renewable Energy Agency; 2018

Renewable energy needs to be scaled up at least six times faster for the world to start to meet the goals set out in the Paris Agreement.
The historic climate accord from 2015 seeks, at minimum, to limit average global temperature rise to “well below 2°C” in the present century, compared to pre-industrial levels. Renewables, in combination with rapidly improving energy efficiency, form the cornerstone of a viable climate solution.
Keeping the global temperature rise below 2 degrees Celsius (°C) is technically feasible. It would also be more economically, socially and environmentally beneficial than the path resulting from current plans and policies. However, the global energy system must undergo a profound transformation, from one largely based on fossil fuels to one that enhances efficiency and is based on renewable energy. Such a global energy transformation – seen as the culmination of the “energy transition” that is already happening in many countries – can create a world that is more prosperous and inclusive.

Criticism of IRENA 2018

How to save the world from climate catastrophe – the IRENA study Roger Andrews; Energy Matters; 20 Nov 2018

IRENA, the International Renewable Agency, has just published a study showing how the world can meet the not-to-exceed-2°C emissions goal set by the Paris Agreement. It’s not a 100% renewables study – it still includes a little oil, gas and nuclear – but it concludes, unsurprisingly, that a massive expansion of renewable energy in all sectors will be needed between now and 2050, along with major improvements in energy efficiency, to keep the Earth within its allowable carbon budget. The study provides information on the changes that will be needed to meet this goal but provides no specifics on how they are to be met. It estimates the costs of the changes at $120 trillion (~$4 trillion/year from now to 2050, or about 5% of total world GDP) but provides no specifics on where the money is to come from. It is nevertheless confident that this massive outlay will be “dwarfed by the benefits”.
The IRENA report contains 73 pages, only 10 of which (Analysis and Insights in Key Sectors, pp. 31-40) deal with the specifics of the changes that are needed to achieve IRENA’s proposed “energy transition”. But no information is provided on how these changes are to be achieved and whether they will work if they are. Simulation models, such as those used in the Jacobson, Lappeenranta and Blakers studies, are normally used to perform this task, but IRENA seems to have by-passed this step. It has simply estimated how much renewable energy and improved energy efficiency is needed to meet the 2°C emissions goal, and the costs thereof, and it presents these estimates as achievable solutions rather than targets.
REmap’s assumed energy efficiency improvements cut the world’s 2050 energy consumption by 40% over what it would otherwise have been
The REmap scenario envisions a doubling of electricity generation, achieved mostly by a massive expansion of wind and solar, coupled with a reduction in fossil fuel generation
The percentage of renewables in the mix increases from 24% to 85% between 2015 and 2050. The remaining generation consists of 4% nuclear and 10% gas
  • Hydro capacity expands by 37.5% between 2015 and 2050 and pumped hydro capacity by a factor of 2.1 (note that capacity is again give in GW, not GWh). This is optimistic but not unreasonable.
  • Onshore wind capacity expands by factor of 12.3. The feasibility of this is questionable. Onshore wind is already coming under attack for its visual and potential health impacts, and the scale of the additions (an annual average of 150GW, roughly twice the UK’s total installed capacity) far exceeds anything achieved to date.
  • Offshore wind capacity expands by a factor of 43. Enough said.
  • Solar PV capacity expands by a factor of 32, an average rate of 230 GW a year. The maximum annual rate achieved so far, with the assistance of generous subsidies, is 100 GW/year.
  • CSP (concentrated solar power) capacity expands by a factor of 127 to 633GW, roughly twice Japan’s present installed capacity. As discussed in posts here and here CSP is a borderline failed technology.
  • Bioenergy capacity expands by a factor of 3.2 to 384 GW. I don’t have enough information to say whether this is feasible or not.
  • Geothermal capacity expands by a factor of 23 to 227 GW. As discussed in this post there aren’t enough high-temperature geothermal resources in the world to support this level of expansion.
  • Others (marine, hybrid) expand by a factor of 2,937 to 881 GW, not far short of total installed capacity in the European Union. If two-thirds of it is tidal we are looking at approximately 2,500 Swansea-Bay-sized tidal lagoons.
The question here is whether the generation from this capacity mix will cover demand 24/365 in all parts of the world. Simulation models, such as those used in the Jacobson, Lappeenranta and Blakers studies, are normally used to perform this task, but IRENA seems to have bypassed this step altogether. It has simply estimated how much renewable energy and improved energy efficiency is needed to meet the 2°C emissions goal, and it presents these estimates as achievable solutions rather than targets. Whether they would cover global demand 24/365 is, however, questionable. Conditions will of course vary in different places, but with 41,500 TWh of annual generation the average load will be 5.4 TW – substantially more than the 3.5 TW of dispatchable generation, some of which will not be well-adapted for load following. Managing wind and solar surpluses and deficits could therefore pose a problem.
And how does IRENA propose to manage it? It devotes only two short paragraphs, neither of which tells us much, to the issue (note: VRE = Variable Renewable Energy):
Investments will be needed for storage, transmission and distribution capacity, and for flexible generation and demand-response. Between 2015 and 2050, investments in these areas would add an estimated USD 9 trillion under the REmap Case (relative to the Reference Case). This investment would allow the system to accommodate 62% VRE while ensuring an adequate, stable and reliable electricity supply.
Support investment to enable infrastructure to integrate VRE and smart technologies (including batteries, smart charging for electric vehicles, blockchain, machine learning, use of “big data”) that have the potential to optimise extensive use of renewables to generate power.
And how much storage capacity will there be? None is listed in Figure 6, but the Transport section (IRENA Figure 10) includes 12,380 GWh of EV battery storage, enough to keep the world in electricity for about two hours assuming 100% charge/discharge efficiency. According to IRENA this capacity will come from over 1 billion EVs.
sales of electric vehicles, electric buses and electric two- and three-wheelers are growing. In 2017 around 3 million electric vehicles were on the road. Under the REmap Case, the number would increase to over 1 billion by 2050.
But 12,380 GWh spread over 1 billion EVs gives an average of only 12.38 kWh/vehicle, so many of these vehicles will be two- and three-wheelers used for transportation in developing countries. Whether these vehicles can be counted on to discharge their batteries when the grid needs it is questionable. Whether owners of four-wheel EVs in developed countries can be counted on to discharge their batteries when the grid needs it questionable too.

Energy Matters

Euan Mearns and Roger Andrews at the Energy Matters blog have posted analyses of various scenarios for achieving reliable electricity supplies from wind and solar energy.

Wind + storage for peak-smoothing

The Cost of Dispatchable Wind Power Euan Mearns; Energy Matters; 15 Jun 2015

I calculate how much storage would be required to deliver the diurnal peaks in demand from dispatchable wind – pumped – storage – hydro. I’ve taken this approach for a number of reasons:
  • The daily demand peaks fetch the highest prices and supplying these peaks follows the traditional finance model for pumped storage hydro – buying low and selling high
  • Servicing the peaks as opposed to base load minimises the amount of storage required (the demand peaks represent 18% of total demand in March 2015)
  • Supplying the demand peaks in the UK from wind + storage will allow about 20 GW of conventional generation to be retired
  • Allowing the fossil fuel generators to supply base load allows them to run at optimum efficiency and to minimise their CO2 emissions per unit of electricity produced. By way of contingency it leaves the door open for an all-nuclear base load supply.

Over-capacity and curtailment

The quest for 100% renewables – can curtailment replace storage? Roger Andrews; Energy Matters; 23 Jun 2017

Previous Energy Matters posts have highlighted the prohibitive amounts of energy storage that are needed to make 100% intermittent renewables work. In this post I give the problem one last shot. Can storage requirements be reduced to manageable levels by producing more renewable energy than is needed to fill demand and curtailing the surpluses? The answer is no. Curtailment does indeed reduce storage requirements, but not to manageable levels. This would appear to eliminate the possibility of developing a grid powered 100% by intermittent renewables. Backup fossil fuel generation will always be needed to fill demand when the sun doesn’t shine and the wind doesn’t blow.

Wind Blowing Nowhere Roger Andrews; Energy Matters; 23 Jan 2015

In much of Europe energy policy is being formulated by policymakers who assume that combining wind generation over large areas will flatten out the spikes and fill in the troughs and thereby allow wind to be “harnessed to provide reliable electricity” as the European Wind Energy Association tells them it will:
The wind does not blow continuously, yet there is little overall impact if the wind stops blowing somewhere – it is always blowing somewhere else. Thus, wind can be harnessed to provide reliable electricity even though the wind is not available 100% of the time at one particular site.
Here we will review whether this assumption is valid. We will do so by progressively combining hourly wind generation data for 2013 for nine countries in Western Europe downloaded from the excellent data base compiled by Paul-Frederik Bach, paying special attention to periods when “the wind stops blowing somewhere”. The nine countries are Belgium, the Czech Republic, Denmark, Finland, France, Ireland, Germany, Spain and the UK, which together cover a land area of 2.3 million square kilometers and extend over distances of 2,000 kilometers east-west and 4,000 kilometers north-south:

Quantifying wind surpluses and deficits in Western Europe Roger Andrews; Energy Matters; 7 Nov 2018

This post updates my January 2015 Wind blowing nowhere post using 2016 rather than 2013 data. The 2016 data show the same features as the 2013 data, with high and low wind conditions extending over large areas and a decreasing level of correlation with distance between countries. The post also quantifies the surpluses and deficits created by high and low wind conditions in January 2016 in gigawatts. The results indicate that wind surpluses in Western European countries during windy periods will be too large to be exported to surrounding countries and that wind deficits during wind lulls will be too large to be covered by imports from surrounding countries. This casts further doubt on claims that wind surpluses and deficits in one region can be offset by transfers to and from another because the wind is always blowing somewhere.

Offshore wind - more reliable?

Can offshore wind be integrated with the grid? Roger Andrews; Energy Matters; 7 Jul 2017

This is absolutely, positively my last effort to find something good to say about wind power. Previous Energy Matters posts that highlight the difficulties of integrating intermittent wind power with the grid have been based dominantly on onshore wind data, but claims that offshore wind is significantly less erratic and will therefore be much easier to integrate with the grid have not been checked. This post reviews the question of whether it will. It finds that offshore wind is indeed less erratic than onshore wind but still nowhere near consistent enough to do away with the need for storage or conventional backup generation.

Converting intermittent to reliable

Grid-Scale Storage of Renewable Energy: The Impossible Dream Euan Mearns; Energy Matters; 20 Nov 2017

The utopian ambition for variable renewable energy is to convert it into uniform firm capacity using energy storage. Here we present an analysis of actual UK wind and solar generation for the whole of 2016 at 30 minute resolution and calculate the grid-scale storage requirement. In order to deliver 4.6 GW uniform and firm RE supply throughout the year, from 26 GW of installed capacity, requires 1.8 TWh of storage. We show that this is both thermodynamically and economically implausible to implement with current technology.

Chile

The Valhalla solar/pumped hydro project Roger Andrews; Energy Matters; 27 Dec 2017

How Chile’s electricity sector can go 100% renewable Roger Andrews; Energy Matters; 3 Jan 2018

If pumped hydro plants that use the sea as the lower reservoir can be put into large-scale operation Chile would be able to install at least 10 TWh of pumped hydro storage along its northern coast. With it Chile could convert enough intermittent solar into dispatchable form to replace all of its current fossil fuel generation, and at a levelized cost of electricity (provisionally estimated at around $80/MWh) that would be competitive with most other dispatchable generation sources. Northern Chile’s impressive pumped hydro potential is a result of the existence of natural depressions at elevations of 500m or more adjacent to the coast that can hold very large volumes of sea water and which form ready-made upper reservoirs.

California

How California’s electricity sector can go 100% renewable Roger Andrews; Energy Matters; 17 Jan 2018

In my recent Chile post I outlined a plan under which Chile’s electricity sector could go 100% renewable by developing the pumped hydro storage potential of the Atacama Desert. In this post I consider whether California might not be able to do the same thing by developing the pumped hydro storage potential that exists just across the border in Northern Mexico. The conclusion is that it probably could, but not until California legislators recognize that megawatt-hour batteries will not supply the terawatt-hours of energy storage that will be needed to support an all-renewables grid, which so far they show no signs of doing.

Storage

Battery storage* in perspective – solving 1% of the problem Roger Andrews; Energy Matters; 19 Feb 2018

The energy world is fixated on the “huge” amounts of battery storage presently being installed to back up slowly-increasing levels of intermittent renewables generation. The feeling seems to be that as soon as enough batteries are installed to take care of daily supply/demand imbalances we will no longer need conventional dispatchable energy – solar + wind + storage will be able to do it all. Here I take another look at the realities of the situation using what I hope are some telling visual examples of what battery storage will actually do for us. As discussed in previous posts it will get us no closer to the vision of a 100% renewables-powered world than we are now.
*Note: “Battery storage” covers all storage technologies currently being considered, including thermal, compressed air, pumped hydro etc. Batteries are, however, the flavor of the moment and are expected to capture the largest share of the future energy storage market.

Australia

Pumped hydro energy storage in Australia – Snowy 2.0 vs. sea water Roger Andrews; Energy Matters; 12 Mar 2018

To support a 100% renewable electricity sector Australia will need approximately 10 terawatt-hours of long-term energy storage. The multi-billion-dollar Snowy 2.0 pumped hydro project will supply only 0.35 terawatt-hours, a small fraction of this, and conventional pumped hydro potential elsewhere in Australia, including Tasmania, will not fill the gap. This post addresses the question of whether Australia might not do better to pursue sea water pumped hydro instead of Snowy 2.0-type projects. Sea water pumped hydro potential in Australia is limited by the lack of suitable coastal topography, but there are sites capable of storing very large amounts of sea water at distances of more than 20km from the coast. The question is whether these sites can be developed and operated at acceptable cost.

Demand Response

Why “demand response” won’t work Roger Andrews; Energy Matters; 17 May 2018

Those who envision a world powered entirely by renewables assume that “demand response” will play a key role in matching intermittent generation to future demand. In this post I evaluate historic demand data from two quite different grids – Denmark and California – to determine what factors have affected demand there and how large these effects are. In both cases demand changes are closely correlated with rapidly rising electricity prices, but these have not resulted in significant demand reductions in Denmark or, arguably, any demand reductions at all in California. Attempts to flatten out California’s “duck curve” have also been unsuccessful despite punitive electricity rates during high-demand periods. The conclusion is that financial incentives and disincentives will not result in the levels of demand response necessary to support an all-renewables world.

Scotland

Scotland Gagging on Wind Power Euan Mearns; Energy Matters; 12 Jan 2015

Discussion of Scottish renewables (mainly wind) capacity development

WWF – Masters of Spin Euan Mearns; Energy Matters; 5 Jan 2015

The World Wildlife Fund (WWF) issued a press release on 3rd January detailing Scottish renewable energy production for 2014. The press release is based on data provided by WeatherEnergy, an organisation whose business I have yet to establish*. Here’s how my local Press and Journal reported the story:
Wind turbines generated enough power to supply more than 100% of Scottish households on 25 out of the 31 days of December. Throughout the year wind provided enough power for the electrical needs of 98% of Scottish households with solar power meeting two-thirds or more of household electricity or hot water needs, it added.
In fact what this should say is:
Our computer model of wind and sunshine distribution suggests that wind turbines may have provided 35% and solar photovoltaics 0.44% of Scotland’s electricity in 2014.

Why Can't America Follow Scotland to 100 Percent Renewable Energy? Luke Darby; GQ; 31 Jan 2020

Scotland is officially on track to run on 100 percent renewable energy by the end of 2020, just in time to host the United Nations Climate Change Conference later this year. The country has been aggressively leading the way in transitioning off of fossil fuels. It closed its last coal plant in 2016 and has vastly expanded its wind and solar power infrastructure. Last year, Scotland produced 9.8 million megawatt hours of wind energy, or more than twice the power needed for all 4.47 million homes in Scotland. And the Scottish government set a legally binding resolution to get the country down to net-zero emissions by 2045, five years ahead of the rest of the United Kingdom.
Officials in Scotland concede that their rapid gains are thanks to going after "low hanging fruit," obvious and relatively easy fixes that don't directly inconvenience people. Getting all the way to net-zero emissions will involve revamping transportation, private industry, and home heating, which will likely be a much bigger headache than simply transitioning from fossil-fuel power plants.
Comment on GQ article
  • the headline talks about "100 Percent Renewable Energy" whereas the small print in the article makes clear they're only talking about electricity, which is a small (though significant) proportion of total energy consumption, which will not be decarbonised any time soon
  • the article itself gives no information about the sources of "renewable" energy in Scotland, and whether a small country with exceptional hydro, wind, wave and tidal resources in proportion to its population is a good comparison for a diverse, continent-sized country.
  • Also not mentioned in the article is that Scotland has 2 nuclear power stations providing baseload, a gas plant, and interconnections to England. Scotland's net "renewable" energy production may be comfortably greater than its net energy demand, but it seems likely that nuclear, gas, and energy from south of the border will be keeping its lights on when the wind doesn't blow.

Others

How The Grid Works, & Why Renewables Can Dominate Christopher Arcus; CleanTechnica blog; 16 Dec 2015

Claims that high levels - though not not 100% - of renewables penetration could be achieved without significant storage.

The Environmentalist Case Against 100% Renewable Energy Plans JULIAN SPECTOR @JulianSpector; Citylab; 20 Jul 2015 (republished on Mother Jones as Why We Need Nuclear Power)

Leap Manifesto (Canadian)

Energy proposals based on Jacobson

50% WWS

Renewables-based ‘smart grid’ keeps lights on even during ‘wind lull’, and does so affordably ;Energy & Climate Intelligence Unit; 22 Nov 2018

A smart grid based around wind and solar power would be able to keep Britain’s lights on even during an extreme three-week ‘wind lull’ in the middle of winter, a new analysis shows.
This is a key finding in a report by New Resource Partners on the resilience of a smart, flexible power system increasingly dominated by variable renewable sources of electricity.
The report also found that by 2030, a UK electricity system where wind and solar generate 50 per cent of the country’s electricity is comparable on cost with one dominated by gas-fired power stations.

GB Power Transition: Get Smart


Off Grid

Will solar panels and Tesla Powerwalls meet your home’s energy needs? Roger Andrews; Energy Matters; 29 Nov 2017

Tesla is now marketing its Powerwall2 storage battery for domestic applications, claiming among other things that it can make your home self-powered and blackout-proof. Here I review Tesla’s claims using an existing rooftop PV array in the Arizona desert as a real-life example. Will a few Powerwalls allow the homeowner to go off-grid? Not a chance. Will they make the home blackout-proof? Maybe, maybe not. Will they save the homeowner money on his electricity bills? Not that I can see.
The example rooftop array is in Tucson, Arizona. I selected Tucson because if a solar-Powerwall2 combination won’t work there it won’t work anywhere in the US. Except for the area around Death Valley to the northwest the solar resource is about as good as it gets, the low (about 30%) seasonal solar range means that there is no large seasonal storage requirement and seasonal generation is not in antiphase to demand, as it is in some areas farther north

Going off-grid in the UK Roger Andrews; Energy Matters; 6 Dec 2017

In my recent post featuring a residence in Tucson, Arizona (latitude 32 north) I found that no reasonable number of Tesla Powerwalls would allow the homeowner to go off-grid using a combination of solar and battery storage. In this post I review a residence in UK (latitude 52 north) and find, unsurprisingly, that its prospects for going off-grid with solar and Powerwalls are likewise non-existent. Further reviews show that the overgeneration approach does not work well in the UK either. The only presently-available option for a UK homeowner with a solar array who wants to go off grid is to combine solar with a backup generator.

More on going off-grid in UK Roger Andrews; Energy Matters; 13 Dec 2017

In my previous Going off-grid post I reviewed the question of whether Tesla Powerwalls or overgeneration, considered separately, might allow a UK homeowner with a rooftop solar array to go off-grid. In this post I consider the two in combination. Once more using 10 Mossbank Way as an example I find that there are circumstances in which it might make marginal economic sense for Mossbank to install up to one Powerwall, but that again that there is no realistic combination of Powerwalls and overgeneration that would allow Mossbank to power itself year-round with solar alone. Going off-grid is again found to increase Mossbank’s electricity costs substantially no matter what combination of the two is adopted.

Critique of 100% renewables plans generally

Imperial College

Real-World Challenges with a Rapid Transition to 100% Renewable Power Systems Clara Franziska Heuberger, Niall Mac Dowell; Joule; 26 Feb 2018


Running on renewables: how sure can we be about the future? Hayley Dunning; Imperial College News; 6 Mar 2018

A variety of models predict the role renewables will play in 2050, but some may be over-optimistic, and should be used with caution, say researchers.
... researchers at Imperial College London have urged caution when basing future energy decisions on over-optimistic models that predict that the entire system could be run on renewables by the middle of this century.
Mathematical models are used to provide future estimates by taking into account factors such as the development and adoption of new technologies to predict how much of our energy demand can be met by certain energy mixes in 2050.
These models can then be used to produce ‘pathways’ that should ensure these targets are met – such as through identifying policies that support certain types of technologies.
However the models are only as good as the data and underlying physics they are based on, and some might not always reflect ‘real-world’ challenges. For example, some models do not consider power transmission, energy storage, or system operability requirements.


Now, in a paper published in the journal Joule, Imperial researchers have shown that studies that predict whole systems can run on near-100% renewable power by 2050 may be flawed as they do not sufficiently account for reliability of the supply.
Using data for the UK, the team tested a model for 100% power generation using only wind, water and solar (WWS) power by 2050. They found that the lack of firm and dispatchable ‘backup’ energy systems – such as nuclear or power plants equipped with carbon capture systems – means the power supply would fail often enough that the system would be deemed inoperable.
The team found that even if they added a small amount of backup nuclear and biomass energy, creating a 77% WWS system, around 9% of the annual UK demand could remain unmet, leading to considerable power outages and economic damage.
"...If a specific scenario relies on a combination of hypothetical and potentially socially challenging adaptation measures, in addition to disruptive technology breakthroughs, this begins to feel like wishful thinking."


Heard, Brook, Wigley & Bradshaw

Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw; Renewable and Sustainable Energy Reviews; Volume 76, September 2017, Pages 1122–1133 [paywall]

Abstract
An effective response to climate change demands rapid replacement of fossil carbon energy sources. This must occur concurrently with an ongoing rise in total global energy consumption. While many modelled scenarios have been published claiming to show that a 100% renewable electricity system is achievable, there is no empirical or historical evidence that demonstrates that such systems are in fact feasible. Of the studies published to date, 24 have forecast regional, national or global energy requirements at sufficient detail to be considered potentially credible. We critically review these studies using four novel feasibility criteria for reliable electricity systems needed to meet electricity demand this century. These criteria are: (1) consistency with mainstream energy-demand forecasts; (2) simulating supply to meet demand reliably at hourly, half-hourly, and five-minute timescales, with resilience to extreme climate events; (3) identifying necessary transmission and distribution requirements; and (4) maintaining the provision of essential ancillary services. Evaluated against these objective criteria, none of the 24 studies provides convincing evidence that these basic feasibility criteria can be met. Of a maximum possible unweighted feasibility score of seven, the highest score for any one study was four. Eight of 24 scenarios (33%) provided no form of system simulation. Twelve (50%) relied on unrealistic forecasts of energy demand. While four studies (17%; all regional) articulated transmission requirements, only two scenarios—drawn from the same study—addressed ancillary-service requirements. In addition to feasibility issues, the heavy reliance on exploitation of hydroelectricity and biomass raises concerns regarding environmental sustainability and social justice. Strong empirical evidence of feasibility must be demonstrated for any study that attempts to construct or model a low-carbon energy future based on any combination of low-carbon technology. On the basis of this review, efforts to date seem to have substantially underestimated the challenge and delayed the identification and implementation of effective and comprehensive decarbonization pathways.

The dream of 100% renewables assessed by Heard et al Roger Andrews; Energy Matters; 12 Apr 2017

Discussion of Heard et al paper

Others

A beginner’s guide to the debate over 100% renewable energy Is it the right target? Is it even possible? David Roberts; Vox; 4 Apr 2017

Imagine powering civilization entirely with energy from renewable sources: wind, sun, water (hydroelectricity), naturally occurring heat (geothermal), and plants. No coal mines, oil wells, pipelines, or coal trains. No greenhouse gas emissions, car exhaust, or polluted streams. No wars over oil, dependence on foreign suppliers, or resource shortages.
Sounds nice, right?
A growing number of activists say it is within reach. The idea has inspired ambitious commitments from an increasing number of cities, including Madison, Wisconsin, San Diego, and Salt Lake City. Advocates are pushing states to support the goal. Clean-energy enthusiasts frequently claim that we can go bigger, that it’s possible for the whole world to run on renewables — we merely lack the “political will.” So, is it true? Do we know how get to an all-renewables system? Not yet. Not really. Current modeling strongly suggests that we will need a broader portfolio of low-carbon options, including nuclear and possibly coal or natural gas with carbon capture and sequestration (CCS), to get deep cuts in carbon.

Is 100% renewable energy realistic? Here’s what we know. David Roberts; Vox; 7 Apr 2017

Reasons for skepticism, reasons for optimism, and some tentative conclusions.
Two potentially large sources of dispatchable carbon-free power are nuclear and fossil fuels with carbon capture and sequestration (CCS). Suffice it to say, a variety of people oppose one or both of those sources, for a variety of reasons. So then the question becomes, can we balance out VRE in a deeply decarbonized grid without them? Do our other dispatchable balancing options add up to something sufficient? That is the core of the dispute over 100 percent renewable energy: whether it is possible (or advisable) to decarbonize the grid without nuclear and CCS. In this post I’m going to discuss three papers that examine the subject, try to draw a few tentative conclusions, and issue a plea for open minds and flexibility.

Energiewende and Caliwende – the Heavy Cost of Ideology Seeker Blog; 17 Jan 2016

A Brave New World - deep decarbonisation of energy grids J.P.Morgan; 19 Oct 2015

we focus on Germany and its Energiewende plan (deep de-carbonization of the electricity grid in which 80% of demand is met by renewable energy), and on a California version we refer to as Caliwende. We compare these systems to the current electricity mix, and to a balanced system with a mix of renewable and nuclear energy
Our primary conclusions:
  • A critical part of any analysis of high-renewable systems is the cost of backup thermal power and/or storage needed to meet demand during periods of low renewable generation. These costs are substantial; as a result, levelized costs of wind and solar are not the right tools to use in assessing the total cost of a high-renewable system
  • Emissions. High-renewable grids reduce CO2 emissions by 65%-70% in Germany and 55%-60% in California vs. the current grid. Reason: backup thermal capacity is idle for much of the year
  • Costs. High-renewable grid costs per MWh are 1.9x the current system in Germany, and 1.5x in California. Costs fall to 1.6x in Germany and 1.2x in California assuming long-run “learning curve” declines in wind, solar and storage costs, higher nuclear plant costs and higher natural gas fuel costs
  • Storage. The cost of time-shifting surplus renewable generation via storage has fallen, but its cost, intermittent utilization and energy loss result in higher per MWh system costs when it is added
  • Nuclear. Balanced systems with nuclear power have lower estimated costs and CO2 emissions than high-renewable systems. However, there’s enormous uncertainty regarding the actual cost of nuclear power in the US and Europe, rendering balanced system assessments less reliable. Nuclear power is growing in Asia where plant costs are 20%-30% lower, but political, historical, economic, regulatory and cultural issues prevent these observations from being easily applied outside of Asia
  • Location and comparability. Germany and California rank in the top 70th and 90th percentiles with respect to their potential wind and solar energy (see Appendix I). However, actual wind and solar energy productivity is higher in California (i.e., higher capacity factors), which is the primary reason that Energiewende is more expensive per MWh than Caliwende. Regions without high quality wind and solar irradiation may find that grids dominated by renewable energy are more costly
  • What-ifs. National/cross-border grid expansion, storing electricity in electric car batteries, demand management and renewable energy overbuilding are often mentioned as ways of reducing the cost of high-renewable systems. However, each relies to some extent on conjecture, insufficient empirical support and/or incomplete assessments of related costs

The Climate Challenge: Can Renewables Really do it Alone? Josh Freed, Matt Bennett, Matt Goldberg; Third Way think-tank; 16 Dec 2015

tl;dr: no

Can You Make a Wind Turbine Without Fossil Fuels? Robert Wilson; Carbon Counter; 11 Jun 2015

fossil fuel requirements and CO2 emissions of steel & concrete production - relevant to nuclear etc also
THIS POST ORIGINALLY APPEARED AT THE ENERGY COLLECTIVE

Limitations of 'Renewable' Energy Leo Smith MA (Electrical sciences); (self-published)

  • Introduction
  • The three necessary concepts
  • What is energy and power density, and why is it important?
  • The important problem of intermittency
  • What is dispatch, and why is it important?
  • Nuclear power, dispatch and co-operation with intermittent renewables
  • Dispatching with hydro electricity or pumped storage
  • Dispatching with fossil fuelled power stations
  • Capacity factor, and cost benefit analysis
  • Where capacity factor originated
  • The cost of variability
  • Deriving costs of electrical generation
  • Costing mixed grids of medium intermittent renewable content
  • Indirect social, financial, resource and environmental costs of intermittency
  • The real economics of nuclear power.
  • Safety, waste disposal, and decommissioning
  • A pessimistic view?

Wind and Solar Power Advance, but Carbon Refuses to Retreat EDUARDO PORTER; N Y Times; 7 Nov 2017

... as climate diplomats gather this week in Bonn, Germany, for the 23rd Conference of the Parties under the auspices of the United Nations Framework Convention on Climate Change, I would like to point their attention to a different, perhaps gloomier statistic: the world’s carbon intensity of energy.
The term refers to a measure of the amount of CO2 spewed into the air for each unit of energy consumed. It offers some bad news: It has not budged since that chilly autumn day in Kyoto 20 years ago. Even among the highly industrialized nations in the Organization for Economic Cooperation and Development, the carbon intensity of energy has declined by a paltry 4 percent since then, according to the International Energy Agency.
This statistic, alone, puts a big question mark over the strategies deployed around the world to replace fossil energy. In a nutshell: Perhaps renewables are not the answer.
Over the past 10 years, governments and private investors have collectively spent $2 trillion on infrastructure to draw electricity from the wind and the sun, according to estimates by Bloomberg New Energy Finance. Environmental Progress, a nonprofit that advocates nuclear power as an essential tool in the battle against climate change, says that exceeds the total cost of all nuclear plants built to date or under construction, adjusted for inflation.
Capacity from renewable sources has grown by leaps and bounds, outpacing growth from all other sources — including coal, natural gas and nuclear power — in recent years. Solar and wind capacity installed in 2015 was more than 10 times what the International Energy Agency had forecast a decade before.
Still, except for very limited exceptions, all this wind and sun has not brought about much decarbonization. Indeed, it has not added much clean power to the grid.
Environmental Progress performed an analysis of the evolution of the carbon intensity of energy in 68 countries since 1965. It found no correlation between the additions of solar and wind power and the carbon intensity of energy: Despite additions of renewable capacity, carbon intensity remained flat.

Proportion clean energy hydro+nuclear v renewables by country NY Times.png

The $2.5 trillion reason we can’t rely on batteries to clean up the grid James Temple; MIT Technology Review; 27 Jul 2018

Fluctuating solar and wind power require lots of energy storage, and lithium-ion batteries seem like the obvious choice—but they are far too expensive to play a major role.

Resource requirements of renewables

Netherlands (Metabolic) study

METAL DEMANDFOR RENEWABLE ELECTRICITYGENERATION IN THE NETHERLANDS Pieter van Exter et al; Metabolic; 2018

The current global supply of several critical metals is insufficient to transition to a renewable energy system. Calculations for the Netherlands show that production of wind turbines and photovoltaic (PV) solar panels already requires a significant share of the annual global production of some critical metals.Looking at the global scale, scenarios in line with the goals of the Paris Agreement require the global production of some metals to grow at least twelvefold towards 2050, compared to today’s output. Specifically, the demand for neodymium, terbium, indium, dysprosium, and praseodymium stands out. This calculation does not include the demand for these specific metals in other applications, such as electric vehicles or consumer electronics.

We Don't Mine Enough Rare Earth Metals to Replace Fossil Fuels With Renewable Energy Nafeez Ahmed; Vice Motherboard; 12 Dec 2018

Rare earth metals are used in solar panels and wind turbines—as well as electric cars and consumer electronics. We don't recycle them, and there's not enough to meet growing demand.
A new scientific study supported by the Dutch Ministry of Infrastructure warns that the renewable energy industry could be about to face a fundamental obstacle: shortages in the supply of rare metals.
To meet greenhouse gas emission reduction targets under the Paris Agreement, renewable energy production has to scale up fast. This means that global production of several rare earth minerals used in solar panels and wind turbines—especially neodymium, terbium, indium, dysprosium, and praseodymium—must grow twelvefold by 2050.
But according to the new study by Dutch energy systems company Metabolic, the “current global supply of several critical metals is insufficient to transition to a renewable energy system.”
The study focuses on demand for rare metals in the Netherlands and extrapolates this to develop a picture of how global trends are likely to develop.
“If the rest of the world would develop renewable electricity capacity at a comparable pace with the Netherlands, a considerable shortage would arise,” the study finds. This doesn’t include other applications of rare earth metals in other electronics industries (rare earth metals are widely used in smartphones, for example). “When other applications (such as electric vehicles) are also taken into consideration, the required amount of certain metals would further increase.”
Demand for rare metals is pitched to rise exponentially across the world, and not just due to renewables. Demand is most evident in “consumer electronics, military applications, and other technical equipment in industrial applications. The growth of the global middle class from 1 billion to 3 billion people will only further accelerate this growth.”
But the study did not account for those other industries. This means the actual problem could be far more intractable. In 2017, a study in Nature found that a range of minerals essential for smartphones, laptops, electric cars and even copper wiring could face supply shortages in coming decades.

Mineral supply for sustainable development requires resource governance Saleem H. Ali; Nature; 16 Mar 2017 (paywalled)

Successful delivery of the United Nations sustainable development goals and implementation of the Paris Agreement requires technologies that utilize a wide range of minerals in vast quantities. Metal recycling and technological change will contribute to sustaining supply, but mining must continue and grow for the foreseeable future to ensure that such minerals remain available to industry. New links are needed between existing institutional frameworks to oversee responsible sourcing of minerals, trajectories for mineral exploration, environmental practices, and consumer awareness of the effects of consumption. Here we present, through analysis of a comprehensive set of data and demand forecasts, an interdisciplinary perspective on how best to ensure ecologically viable continuity of global mineral supply over the coming decades.

Actual 100% renewable installations

See Small Renewables Projects